由于做毕业论文方向是文本分类,需要用到scikit -learn 工具,借鉴前辈的基础上做了如下实验:
参考了scikit-learn的官方网站
关于分类,我们使用了Iris数据集,这个scikit-learn自带了. Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。
注意,Iris数据集给出的三种花是按照顺序来的,前50个是第0类,51-100是第1类,101~150是第二类,如果我们分训练集和测试集的时候要把顺序打乱 这里我们引入一个两类shuffle的函数,它接收两个参数,分别是x和y,然后把x,y绑在一起shuffle.
def shuffle_in_unison(a, b): assert len(a) == len(b) import numpy shuffled_a = numpy.empty(a.shape, dtype=a.dtype) shuffled_b = numpy.empty(b.shape, dtype=b.dtype) permutation = numpy.random.permutation(len(a)) for old_index, new_index in enumerate(permutation): shuffled_a[new_index] = a[old_index] shuffled_b[new_index] = b[old_index] return shuffled_a, shuffled_b 1234567891011 1234567891011下面我们导入Iris数据并打乱它,然后分为100个训练集和50个测试集
from sklearn.datasets import load_iris iris = load_iris() def load_data(): iris.data, iris.target = shuffle_in_unison(iris.data, iris.target) x_train ,x_test = iris.data[:100],iris.data[100:] y_train, y_test = iris.target[:100].reshape(-1,1),iris.target[100:].reshape(-1,1) return x_train, y_train, x_test, y_test 12345678 12345678得到的结果得分很高,如下所示:
('the classifier is :', 'decision_tree') ('the score is :', 0.92000000000000004) ('the classifier is :', 'naive_gaussian') ('the score is :', 0.93999999999999995) ('the classifier is :', 'gradient_boost') ('the score is :', 0.92000000000000004) ('the classifier is :', 'svm') ('the score is :', 0.93999999999999995) ('the classifier is :', 'random_forest') ('the score is :', 0.92000000000000004) ('the classifier is :', 'bagging_knn') ('the score is :', 0.92000000000000004) ('the classifier is :', 'naive_mul') ('the score is :', 0.80000000000000004) ('the classifier is :', 'K_neighbor') ('the score is :', 0.92000000000000004) ('the classifier is :', 'bagging_tree') ('the score is :', 0.90000000000000002) ('the classifier is :', 'adaboost') ('the score is :', 0.92000000000000004) 123456789101112131415161718192021 123456789101112131415161718192021 顶 0