题目描述
传送门
题解
将式子化一下可以得出
E(i)=∑j=0iqj(i−j)2−∑j=inqj(i−j)2
只考虑第一个式子,令
f(n)=qn,g(n)=1n2
,那么
F(i)=∑j=0if(i)g(i−j)
将序列
q
反转之后可以发现实际上第二个式子就是F(n−i) 正反求两遍卷积,然后答案相减即可
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define N 300005
const double pi=
acos(-
1.0);
int n,L,R[N];
double q[N],c[N],d[N];
struct complex
{
double x,y;
complex(
double X=
0,
double Y=
0)
{
x=X,y=Y;
}
}a[N],b[N];
complex operator + (
complex a,
complex b) {
return complex(a.x+b.x,a.y+b.y);}
complex operator - (
complex a,
complex b) {
return complex(a.x-b.x,a.y-b.y);}
complex operator * (
complex a,
complex b) {
return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
void FFT(
complex a[N],
int n,
int opt)
{
for (
int i=
0;i<n;++i)
if (i<R[i]) swap(a[i],a[R[i]]);
for (
int k=
1;k<n;k<<=
1)
{
complex wn=
complex(
cos(pi/k),opt*
sin(pi/k));
for (
int i=
0;i<n;i+=(k<<
1))
{
complex w=
complex(
1,
0);
for (
int j=
0;j<k;++j,w=w*wn)
{
complex x=a[i+j],y=w*a[i+j+k];
a[i+j]=x+y,a[i+j+k]=x-y;
}
}
}
}
void calc(
int n,
double *p)
{
int m=n+n;L=
0;
memset(R,
0,
sizeof(R));
for (n=
1;n<=m;n<<=
1) ++L;
for (
int i=
0;i<n;++i)
R[i]=(R[i>>
1]>>
1)|((i&
1)<<(L-
1));
FFT(a,n,
1);FFT(b,n,
1);
for (
int i=
0;i<=n;++i) a[i]=a[i]*b[i];
FFT(a,n,-
1);
for (
int i=
0;i<=n;++i) p[i]=a[i].x/n;
}
int main()
{
scanf(
"%d",&n);
for (
int i=
1;i<=n;++i)
scanf(
"%lf",&q[i]);
memset(a,
0,
sizeof(a));
memset(b,
0,
sizeof(b));
a[
0]=b[
0]=
complex(
0,
0);
for (
int i=
0;i<=n;++i) a[i]=
complex(q[i],
0);
for (
int i=
1;i<=n;++i) b[i]=
complex(
1.0/((
double)i*(
double)i),
0);
calc(n,c);
memset(a,
0,
sizeof(a));
memset(b,
0,
sizeof(b));
a[
0]=b[
0]=
complex(
0,
0);
for (
int i=
0;i<=n;++i) a[i]=
complex(q[n-i],
0);
for (
int i=
1;i<=n;++i) b[i]=
complex(
1.0/((
double)i*(
double)i),
0);
calc(n,d);
for (
int i=
1;i<=n;++i)
printf(
"%.6lf\n",c[i]-d[n-i]);
}
转载请注明原文地址: https://ju.6miu.com/read-10318.html