题目描述
传送门
题解
将乘法的每一位看成是多项式的系数 实际上就是两个多项式相乘 直接FFT 处理进位
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define N 200005
const double pi=
acos(-
1.0);
int n,m,L,R[N],ans[N];
struct complex
{
double x,y;
complex(
double X=
0,
double Y=
0)
{
x=X,y=Y;
}
}a[N],b[N];
complex operator + (
complex a,
complex b) {
return complex(a.x+b.x,a.y+b.y);}
complex operator - (
complex a,
complex b) {
return complex(a.x-b.x,a.y-b.y);}
complex operator * (
complex a,
complex b) {
return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
void FFT(
complex a[N],
int opt)
{
for (
int i=
0;i<n;++i)
if (i<R[i]) swap(a[i],a[R[i]]);
for (
int k=
1;k<n;k<<=
1)
{
complex wn=
complex(
cos(pi/k),opt*
sin(pi/k));
for (
int i=
0;i<n;i+=(k<<
1))
{
complex w=
complex(
1,
0);
for (
int j=
0;j<k;++j,w=w*wn)
{
complex x=a[i+j],y=w*a[i+j+k];
a[i+j]=x+y,a[i+j+k]=x-y;
}
}
}
}
int main()
{
scanf(
"%d",&n);--n;
char ch=getchar();
for (
int i=n;i>=
0;--i) a[i].x=(
double)(getchar()-
'0');
ch=getchar();
for (
int i=n;i>=
0;--i) b[i].x=(
double)(getchar()-
'0');
m=n+n;
for (n=
1;n<=m;n<<=
1) ++L;
for (
int i=
0;i<n;++i)
R[i]=(R[i>>
1]>>
1)|((i&
1)<<(L-
1));
FFT(a,
1);FFT(b,
1);
for (
int i=
0;i<=n;++i) a[i]=a[i]*b[i];
FFT(a,-
1);
for (
int i=
0;i<=m;++i) ans[i]=(
int)(a[i].x/n+
0.5);
for (
int i=
0;i<=m;++i)
{
ans[i+
1]+=ans[i]/
10;
ans[i]%=
10;
}
while (ans[m+
1])
{
++m;
ans[m+
1]+=ans[m]/
10;
ans[m]%=
10;
}
for (
int i=m;i>=
0;--i)
putchar(ans[i]+
'0');
puts(
"");
}
转载请注明原文地址: https://ju.6miu.com/read-10643.html