http://blog.csdn.net/lvshubao1314/article/details/38013897
一:递推
二:矩阵
//斐波那契数列第N项后MOD位,矩阵快速幂求法;
#include<iostream>
#include<cstdio>
#include<string.h>
#define LL long long
using namespace std;
const int MOD=10000;
struct Matrix
{
LL m[3][3];
};
Matrix A={0,0,0,
0,1,1,
0,1,0,};
Matrix E={0,0,0,
0,1,0,
0,0,1,};
Matrix multi(Matrix a,Matrix b)
{
Matrix ans;
for(int i=1;i<=2;i++)
{
for(int j=1;j<=2;j++)
{
ans.m[i][j]=0;
for(int k=1;k<=2;k++)
ans.m[i][j]+=a.m[i][k]*b.m[k][j]%MOD;
ans.m[i][j]%=MOD;
}
}
return ans;
}
Matrix power(Matrix a,int p)
{
Matrix ans=E,B=a;
while(p)
{
if(p%2==1)
ans=multi(ans,B);
p=p/2;
B=multi(B,B);
}
return ans;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
Matrix ans=power(A,n-1);
if(n==0)
printf("0\n");
else
printf("%d\n",ans.m[1][1]);
}
return 0;
}
三:利用数学对数计算求前几位数字
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int main()
{
int f[25];
f[0]=0,f[1]=1;
for(int i=2;i<=20;i++)
{
f[i]=f[i-1]+f[i-2];
}
int n;
while(scanf("%d",&n)!=EOF)
{
if(n<=20)
printf("%d\n",f[n]);
else
{
double f=(1.0+sqrt(5.0))/2.0;
double p=-0.5*log10(5.0)+n*1.0*log(f)/log(10.0);
p=p-floor(p);
double ans=pow(10.0,p);
while(ans<1000)
ans=ans*10;
printf("%d\n",(int)ans);
}
}
return 0;
}
转载请注明原文地址: https://ju.6miu.com/read-10795.html