120. Triangle

    xiaoxiao2022-06-22  16

    Problem

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    For example, given the following triangle

    [ [2], [3,4], [6,5,7], [4,1,8,3] ]

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    Solution

    数字三角形问题

    思路不难,从下往上,递推公式:

    dp[i][j] = min(dp[i+1][j], dp[i+1][j+1]) + a[i][j];

    注意的是:

    每行元素个数 = 该行是第几行!!

    直接滚动数组做了

    class Solution { public: int minimumTotal(vector<vector<int>>& triangle) { //不用考虑空的情况 int n = triangle.size(); if (n == 1) { return triangle[0][0]; } vector<int> dp(n); for (int i = 0; i < n; ++i) { dp[i] = triangle[n-1][i]; } for (int i = n-2; i >= 0; --i) { for (int j = 0; j <= i; ++j) { dp[j] = min(dp[j], dp[j+1]) + triangle[i][j]; } } return dp[0]; } };
    转载请注明原文地址: https://ju.6miu.com/read-1122673.html

    最新回复(0)