机器学习(2.7.2)数据知识积累——概率论-超几何分布

    xiaoxiao2022-06-24  33

    超几何分布是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。 在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=C(M,k)·C(N-M,n-k)/C(N,n), C(a b)为古典概型的组合形式,a为下限,b为上限,此时我们称随机变量X服从超几何分布(hypergeometric distribution) (1)超几何分布的模型是不放回抽样 (2)超几何分布中的参数是M,N,n上述超几何分布记作X~H(N,n,M)。

    产品抽样检查中经常遇到一类实际问题,假定在N件产品中有D件不合格品,即不合格率 。 在产品中随机抽n件做检查,发现k件不合格品的概率为 ,k=0,1,2,...,min{n,M}。 亦可写作 (与上式不同的是D可为任意实数,而C表示的组合数D为非负整数) 通常称这个 随机变量X服从超几何分布。这种 抽样检查方法等于无放回抽样。数学上不难证明,N趋近无穷, = ( 二项分布) 因此,在实际应用时,只要N>=10n,就可用二项分布近似描述不合格品个数。 也就是已经知道某个事件的发生概率,判断从中取出一个小样本,该事件以某一个机率出现的概率问题。

    例:在一个口袋中装有30个球,其中有10个红球,其余为 白球,这些球除颜色外完全相同。游戏者一次从中摸出5个球。摸到至少4个红球就中一等奖,那么获一等奖的概率是多少? 解:由题意可见此问题归结为超几何分布模型。 其中N = 30. D = 10. n = 5. P(一等奖) = P(X=4) + P(X=5) 由公式 ,k=0,1,2,...得: P(一等奖) = 106/3393

    期望

    对X~H(N,M,n),E(x)=nM/N 证明:引理一:∑{C(x,a)*C(d-x,b),x=0..min{a,d}}=C(d,a+b),考察(1+x)^a*(1+x)^b中x^d的系数即得。(另:还可以由超几何分布1=∑P(X=K),k=0,1,2....n得) 引理二:k*C(k,n)=n*C(k-1,n-1),易得。 正式证明: EX=∑{k*C(k,M)*C(n-k,N-M)/C(n,N),k=0..min{M,n}} =1/C(n,N)*∑{M*C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}} //(提取公因式,同时用引理二变形,注意k的取值改变) =M/C(n,N)*∑{C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}} (提取,整理出引理一的前提) =M*C(n-1,N-1)/C(n,N) (利用引理一) =Mn/N (化简即得)

    方差

    对X~H(N,M,n),D(X)=nM(N-M)(N-n)/[(N^2)(N-1)] 证明: DX=E(X^2)-(EX)^2 (此公式利用定义式简单展开即得) =∑{k^2*C(k,M)*C(n-k,N-M)/C(n,N),k=0..min{M,n}}-(Mn/N)^2 =1/C(n,N)*∑{M*k*C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}}-(Mn/N)^2(提取,变形) =M/C(n,N)*∑{(k-1)*C(k-1,M-1)*C(n-k,N-M)+C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}}-(Mn/N)^2 (拆项,变形) =M/C(n,N)*∑{(M-1)*C(k-2,M-2)*C(n-k,N-M),k=2..min{M,n}}+M/C(n,N)*∑{C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}}-(Mn/N)^2 (拆开∑,就是分组求和) =M(M-1)*C(n-2,N-2)/C(n,N)+Mn/N-(Mn/N)^2 =nM(N-M)(N-n)/[(N^2)(N-1)] (化简即得) 超几何分布期望与方差和二项分布的联系 视M/N=p 则EX=np DX=np(1-p)*(N-n)/(N-1) 可以看出,均值的公式形式上与二项分布是一至的,而方差也只相差(N-n)/(N-1)。 这一点即有利于对这两个公式的记忆,又从另一个角度说明了:“因此,在实际应用时,只要N>=10n,可用二项分布近似描述不合格品个数。” 补充一个ASP的计算程序,估计明白计算机语言的大家都能看明白:已经去掉了大数阶乘溢出的问题。

    转载请注明原文地址: https://ju.6miu.com/read-1123640.html

    最新回复(0)