RDD基本转换操作(7)–zipWithIndex、zipWithUniqueId

    xiaoxiao2022-06-29  46

    zipWithIndex

    def zipWithIndex(): RDD[(T, Long)]

    该函数将RDD中的元素和这个元素在RDD中的ID(索引号)组合成键/值对。

    scala> var rdd2 = sc.makeRDD(Seq("A","B","R","D","F"),2)rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[34] at makeRDD at :21 scala> rdd2.zipWithIndex().collectres27: Array[(String, Long)] = Array((A,0), (B,1), (R,2), (D,3), (F,4)) 

    zipWithUniqueId

    def zipWithUniqueId(): RDD[(T, Long)]

    该函数将RDD中元素和一个唯一ID组合成键/值对,该唯一ID生成算法如下:

    每个分区中第一个元素的唯一ID值为:该分区索引号,

    每个分区中第N个元素的唯一ID值为:(前一个元素的唯一ID值) + (该RDD总的分区数)

    看下面的例子:

    scala> var rdd1 = sc.makeRDD(Seq("A","B","C","D","E","F"),2)rdd1: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[44] at makeRDD at :21//rdd1有两个分区,scala> rdd1.zipWithUniqueId().collectres32: Array[(String, Long)] = Array((A,0), (B,2), (C,4), (D,1), (E,3), (F,5))//总分区数为2//第一个分区第一个元素ID为0,第二个分区第一个元素ID为1//第一个分区第二个元素ID为0+2=2,第一个分区第三个元素ID为2+2=4//第二个分区第二个元素ID为1+2=3,第二个分区第三个元素ID为3+2=5
    转载请注明原文地址: https://ju.6miu.com/read-1125408.html

    最新回复(0)