java并发编程:线程安全-线程同步-synchronized和lock

    xiaoxiao2022-06-30  55

    多线程在提高效率的同时,必然面临线程安全的问题,Java中提供了一些机制来解决线程安全问题。

    当多个线程同时访问临界资源(或叫共享资源)(一个对象,对象中的属性,一个文件,一个数据库等)时,就可能会产生线程安全问题。

    不过,当多个线程执行一个方法,方法内部的局部变量并不是临界资源,因为方法是在栈上执行的,而Java栈是线程私有的,因此不会产生线程安全问题。

    解决方案:序列化访问临界资源”的方案,即在同一时刻,只能有一个线程访问临界资源,也称作同步互斥访问。

    在Java中,提供了两种方式来实现同步互斥访问:synchronized和Lock。

    1.synchronized

    (1)synchronized方法

    例子:两个线程分别调用insertData对象插入数据:

    public class Test { public static void main(String[] args) { final InsertData insertData = new InsertData(); new Thread() { public void run() { insertData.insert(Thread.currentThread()); }; }.start(); new Thread() { public void run() { insertData.insert(Thread.currentThread()); }; }.start(); } } class InsertData { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); public void insert(Thread thread){ for(int i=0;i<5;i++){ System.out.println(thread.getName()+"在插入数据"+i); arrayList.add(i); } } } 此时程序的输出结果为:

    说明两个线程在同时执行insert方法。

    而如果在insert方法前面加上关键字synchronized的话,运行结果为:

    class InsertData { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); public synchronized void insert(Thread thread){ for(int i=0;i<5;i++){ System.out.println(thread.getName()+"在插入数据"+i); arrayList.add(i); } } }

    从上输出结果说明,Thread-1插入数据是等Thread-0插入完数据之后才进行的。说明Thread-0和Thread-1是顺序执行insert方法的。

    这就是synchronized方法。

    注意:

          1)当一个线程正在访问一个对象的synchronized方法,那么其他线程不能访问该对象的其他synchronized方法。这个原因很简单,因为一个对象只有一把锁,当一个线程获取了该对象的锁之后,其他线程无法获取该对象的锁,所以无法访问该对象的其他synchronized方法。

      2)当一个线程正在访问一个对象的synchronized方法,那么其他线程能访问该对象的非synchronized方法。这个原因很简单,访问非synchronized方法不需要获得该对象的锁,假如一个方法没用synchronized关键字修饰,说明它不会使用到临界资源,那么其他线程是可以访问这个方法的,

      3)如果一个线程A需要访问对象object1的synchronized方法fun1,另外一个线程B需要访问对象object2的synchronized方法fun1,即使object1和object2是同一类型),也不会产生线程安全问题,因为他们访问的是不同的对象,所以不存在互斥问题。

    (2) synchronized代码块

    synchronized代码块类似于以下这种形式:

     synchronized (synObject) {              }

         当在某个线程中执行这段代码块,该线程会获取对象synObject的锁,从而使得其他线程无法同时访问该代码块。

      synObject可以是this,代表获取当前对象的锁,也可以是类中的一个属性,代表获取该属性的锁。

      比如上面的insert方法可以改成以下两种形式:

    <span style="font-size:14px;">class InsertData { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); public void insert(Thread thread){ synchronized (this) { for(int i=0;i<100;i++){ System.out.println(thread.getName()+"在插入数据"+i); arrayList.add(i); } } } }</span>

    <span style="font-size:14px;">class InsertData { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); private Object object = new Object(); public void insert(Thread thread){ synchronized (object) { for(int i=0;i<100;i++){ System.out.println(thread.getName()+"在插入数据"+i); arrayList.add(i); } } } }</span> 从上面可以看出,synchronized代码块使用起来比synchronized方法要灵活得多。 synchronized代码块可以实现只对需要同步的地方进行同步。

    另外,每个类也会有一个锁,它可以用来控制对static数据成员的并发访问。

      并且如果一个线程执行一个对象的非static synchronized方法,另外一个线程需要执行这个对象所属类的static synchronized方法,此时不会发生互斥现象,因为访问static synchronized方法占用的是类锁,而访问非static synchronized方法占用的是对象锁,所以不存在互斥现象。

    看下面这段代码就明白了:

    public class Test { public static void main(String[] args) { final InsertData insertData = new InsertData(); new Thread(){ @Override public void run() { insertData.insert(); } }.start(); new Thread(){ @Override public void run() { insertData.insert1(); } }.start(); } } class InsertData { public synchronized void insert(){ System.out.println("执行insert"); try { Thread.sleep(5000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("执行insert完毕"); } public synchronized static void insert1() { System.out.println("执行insert1"); System.out.println("执行insert1完毕"); } } 执行结果:

    第一个线程里面执行的是insert方法,不会导致第二个线程执行insert1方法发生阻塞现象。

    注意:对于synchronized方法或者synchronized代码块,当出现异常时,JVM会自动释放当前线程占用的锁,因此不会出现由于异常导致出现死锁现象。

    2.Lock

    synchronized是java中的一个关键字,也就是说是Java语言内置的特性。

    代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

      1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;

      2)线程执行发生异常,此时JVM会让线程自动释放锁。

    如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能等待,多么影响程序执行效率。

    因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

    再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

      但是采用synchronized关键字来实现同步的话,就会导致一个问题:

      如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

      因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

      另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

      总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

      1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

      2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

    java.util.concurrent.locks包中常用的类和接口: (1).  Lock

    Lock是一个接口:

    public interface Lock { void lock(); void lockInterruptibly() throws InterruptedException; boolean tryLock(); boolean tryLock(long time, TimeUnit unit) throws InterruptedException; void unlock(); Condition newCondition(); } lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。

    在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

    <1>.lock():如果锁已被其他线程获取,则进行等待。采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。

    通常使用Lock来进行同步的话,是以下面这种形式去使用的:

    Lock lock = ...; lock.lock(); try {      //处理任务 } catch (Exception ex){       } finally {      lock.unlock();    //释放锁 } <2>.tryLock():有返回值,表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

    tryLock(long time, TimeUnit unit):  和tryLock()方法是类似的,区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

    一般情况下通过tryLock来获取锁时是这样使用的:

    Lock lock = ...; if (lock.tryLock()) {       try {           //处理任务       } catch (Exception ex){                 } finally {           lock.unlock();    //释放锁       }  } else  {      //如果不能获取锁,则直接做其他事情 } <3>. lockInterruptibly()

    获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用thread B.interrupt()方法能够中断线程B的等待过程。

    lockInterruptibly()一般的使用形式如下:

    public  void  method()  throws  InterruptedException {      lock.lockInterruptibly();      try  {         //.....      }      finally  {          lock.unlock();      }   }

     注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

      因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

      而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

     ( 2). ReentrantLock

    可重入锁。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。

    例子1,lock()的正确使用方法

    public class Test { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); } public void insert(Thread thread) { Lock lock = new ReentrantLock(); //注意这个地方 lock.lock(); try { System.out.println(thread.getName()+"得到了锁"); for(int i=0;i<5;i++) { arrayList.add(i); } } catch (Exception e) { // TODO: handle exception }finally { System.out.println(thread.getName()+"释放了锁"); lock.unlock(); } } } 输出结果:

    Thread-0得到了锁 Thread-1得到了锁 Thread-0释放了锁 Thread-1释放了锁

    也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

      知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。

    public class Test { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); private Lock lock = new ReentrantLock(); //注意这个地方 public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); } public void insert(Thread thread) { lock.lock(); try { System.out.println(thread.getName()+"得到了锁"); for(int i=0;i<5;i++) { arrayList.add(i); } } catch (Exception e) { // TODO: handle exception }finally { System.out.println(thread.getName()+"释放了锁"); lock.unlock(); } } } 这样就是正确地使用Lock的方法了。

    例子2,tryLock()的使用方法

    public class Test { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); private Lock lock = new ReentrantLock(); //注意这个地方 public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); } public void insert(Thread thread) { if(lock.tryLock()) { try { System.out.println(thread.getName()+"得到了锁"); for(int i=0;i<5;i++) { arrayList.add(i); } } catch (Exception e) { // TODO: handle exception }finally { System.out.println(thread.getName()+"释放了锁"); lock.unlock(); } } else { System.out.println(thread.getName()+"获取锁失败"); } } }输出结果:

    Thread-0得到了锁 Thread-1获取锁失败 Thread-0释放了锁 例子3,lockInterruptibly()响应中断的使用方法:

    public class Test { private Lock lock = new ReentrantLock(); public static void main(String[] args) { Test test = new Test(); MyThread thread1 = new MyThread(test); MyThread thread2 = new MyThread(test); thread1.start(); thread2.start(); try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } thread2.interrupt(); } public void insert(Thread thread) throws InterruptedException{ lock.lockInterruptibly(); //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出 try { System.out.println(thread.getName()+"得到了锁"); long startTime = System.currentTimeMillis(); for( ; ;) { if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE) break; //插入数据 } } finally { System.out.println(Thread.currentThread().getName()+"执行finally"); lock.unlock(); System.out.println(thread.getName()+"释放了锁"); } } } class MyThread extends Thread { private Test test = null; public MyThread(Test test) { this.test = test; } @Override public void run() { try { test.insert(Thread.currentThread()); } catch (InterruptedException e) { System.out.println(Thread.currentThread().getName()+"被中断"); } } } 运行之后,发现thread2能够被正确中断。

     (3).ReadWriteLock

    ReadWriteLock也是一个接口

    public  interface  ReadWriteLock {      Lock readLock();//获取读锁      Lock writeLock();//获取写锁 } 将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。

    下面的ReentrantReadWriteLock实现了ReadWriteLock接口。  (4).ReentrantReadWriteLock

    具体用法:有多个线程要同时进行读操作

    synchronized达到的效果:

    public class Test { private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.get(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.get(Thread.currentThread()); }; }.start(); } public synchronized void get(Thread thread) { long start = System.currentTimeMillis(); while(System.currentTimeMillis() - start <= 1) { System.out.println(thread.getName()+"正在进行读操作"); } System.out.println(thread.getName()+"读操作完毕"); } } 这段程序的输出结果是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

    ReentrantReadWriteLock达到的效果:

    public class Test { private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.get(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.get(Thread.currentThread()); }; }.start(); } public void get(Thread thread) { rwl.readLock().lock(); try { long start = System.currentTimeMillis(); while(System.currentTimeMillis() - start <= 1) { System.out.println(thread.getName()+"正在进行读操作"); } System.out.println(thread.getName()+"读操作完毕"); } finally { rwl.readLock().unlock(); } } }结果是: thread1和thread2在同时进行读操作。大大提升了读操作的效率

    如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

    如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

    Lock和synchronized的选择:

    总结来说,Lock和synchronized有以下几点不同:

      1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

      2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

      3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

      4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

      5)Lock可以提高多个线程进行读操作的效率。

      在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

    锁的相关概念:

    1.可重入锁

    如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

    class  MyClass {      public  synchronized  void  method1() {          method2();      }            public  synchronized  void  method2() {                } }

    上述代码中的两个方法method1和method2都用synchronized修饰了,

    假如synchronized不具备可重入性,某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,此时线程A需要重新申请锁。因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到锁。

      而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

    2.可中断锁

    在Java中,synchronized就不是可中断锁,而Lock是可中断锁。

      如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。

      在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。

    3.公平锁

    公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。

      非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。

      在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。

      而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

    ReentrantLock lock = new ReentrantLock(true);//true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。

    另外在ReentrantLock类中定义了很多方法,比如:

      isFair()        //判断锁是否是公平锁

      isLocked()    //判断锁是否被任何线程获取了

      isHeldByCurrentThread()   //判断锁是否被当前线程获取了

      hasQueuedThreads()   //判断是否有线程在等待该锁

      在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。

    不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。

    4.读写锁

          读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。

      正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。

      ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。

      可以通过readLock()获取读锁,通过writeLock()获取写锁。

    转载请注明原文地址: https://ju.6miu.com/read-1125714.html

    最新回复(0)