原文出自:ACdreamers-决策树之CART算法
在之前介绍过决策树的ID3算法实现,今天主要来介绍决策树的另一种实现,即CART算法。
Contents
1. CART算法的认识
2. CART算法的原理
3. CART算法的实现
1. CART算法的认识
Classification And Regression Tree,即分类回归树算法,简称CART算法,它是决策树的一种实现,通
常决策树主要有三种实现,分别是ID3算法,CART算法和C4.5算法。
CART算法是一种二分递归分割技术,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支,
因此CART算法生成的决策树是结构简洁的二叉树。由于CART算法构成的是一个二叉树,它在每一步的决策时只能
是“是”或者“否”,即使一个feature有多个取值,也是把数据分为两部分。在CART算法中主要分为两个步骤
(1)将样本递归划分进行建树过程
(2)用验证数据进行剪枝
2. CART算法的原理
上面说到了CART算法分为两个过程,其中第一个过程进行递归建立二叉树,那么它是如何进行划分的 ?
设代表单个样本的个属性,表示所属类别。CART算法通过递归的方式将维的空间划分为不重
叠的矩形。划分步骤大致如下
(1)选一个自变量,再选取的一个值,把维空间划分为两部分,一部分的所有点都满足,
另一部分的所有点都满足,对非连续变量来说属性值的取值只有两个,即等于该值或不等于该值。
(2)递归处理,将上面得到的两部分按步骤(1)重新选取一个属性继续划分,直到把整个维空间都划分完。
在划分时候有一个问题,它是按照什么标准来划分的 ? 对于一个变量属性来说,它的划分点是一对连续变量属
性值的中点。假设个样本的集合一个属性有个连续的值,那么则会有个分裂点,每个分裂点为相邻
两个连续值的均值。每个属性的划分按照能减少的杂质的量来进行排序,而杂质的减少量定义为划分前的杂质减
去划分后的每个节点的杂质量划分所占比率之和。而杂质度量方法常用Gini指标,假设一个样本共有类,那么
一个节点的Gini不纯度可定义为
其中表示属于类的概率,当Gini(A)=0时,所有样本属于同类,所有类在节点中以等概率出现时,Gini(A)
最大化,此时。
有了上述理论基础,实际的递归划分过程是这样的:如果当前节点的所有样本都不属于同一类或者只剩下一个样
本,那么此节点为非叶子节点,所以会尝试样本的每个属性以及每个属性对应的分裂点,尝试找到杂质变量最大
的一个划分,该属性划分的子树即为最优分支。
下面举个简单的例子,如下图
在上述图中,属性有3个,分别是有房情况,婚姻状况和年收入,其中有房情况和婚姻状况是离散的取值,而年
收入是连续的取值。拖欠贷款者属于分类的结果。
假设现在来看有房情况这个属性,那么按照它划分后的Gini指数计算如下
而对于婚姻状况属性来说,它的取值有3种,按照每种属性值分裂后Gini指标计算如下
最后还有一个取值连续的属性,年收入,它的取值是连续的,那么连续的取值采用分裂点进行分裂。如下
根据这样的分裂规则CART算法就能完成建树过程。
建树完成后就进行第二步了,即根据验证数据进行剪枝。在CART树的建树过程中,可能存在Overfitting,许多
分支中反映的是数据中的异常,这样的决策树对分类的准确性不高,那么需要检测并减去这些不可靠的分支。决策
树常用的剪枝有事前剪枝和事后剪枝,CART算法采用事后剪枝,具体方法为代价复杂性剪枝法。可参考如下链接
剪枝参考:http://www.cnblogs.com/zhangchaoyang/articles/2709922.html
3. CART算法的实现
以下代码是网上找的CART算法的MATLAB实现。
[plain] view plain copy CART function D = CART(train_features, train_targets, params, region) % Classify using classification and regression trees % Inputs: % features - Train features % targets - Train targets % params - [Impurity type, Percentage of incorrectly assigned samples at a node] % Impurity can be: Entropy, Variance (or Gini), or Missclassification % region - Decision region vector: [-x x -y y number_of_points] % % Outputs % D - Decision sufrace [Ni, M] = size(train_features); %Get parameters [split_type, inc_node] = process_params(params); %For the decision region N = region(5); mx = ones(N,1) * linspace (region(1),region(2),N); my = linspace (region(3),region(4),N)' * ones(1,N); flatxy = [mx(:), my(:)]'; %Preprocessing [f, t, UW, m] = PCA(train_features, train_targets, Ni, region); train_features = UW * (train_features - m*ones(1,M));; flatxy = UW * (flatxy - m*ones(1,N^2));; %Build the tree recursively disp('Building tree') tree = make_tree(train_features, train_targets, M, split_type, inc_node, region); %Make the decision region according to the tree disp('Building decision surface using the tree') targets = use_tree(flatxy, 1:N^2, tree); D = reshape(targets,N,N); %END function targets = use_tree(features, indices, tree) %Classify recursively using a tree if isnumeric(tree.Raction) %Reached an end node targets = zeros(1,size(features,2)); targets(indices) = tree.Raction(1); else %Reached a branching, so: %Find who goes where in_right = indices(find(eval(tree.Raction))); in_left = indices(find(eval(tree.Laction))); Ltargets = use_tree(features, in_left, tree.left); Rtargets = use_tree(features, in_right, tree.right); targets = Ltargets + Rtargets; end %END use_tree function tree = make_tree(features, targets, Dlength, split_type, inc_node, region) %Build a tree recursively if (length(unique(targets)) == 1), %There is only one type of targets, and this generates a warning, so deal with it separately tree.right = []; tree.left = []; tree.Raction = targets(1); tree.Laction = targets(1); break end [Ni, M] = size(features); Nt = unique(targets); N = hist(targets, Nt); if ((sum(N < Dlength*inc_node) == length(Nt) - 1) | (M == 1)), %No further splitting is neccessary tree.right = []; tree.left = []; if (length(Nt) ~= 1), MLlabel = find(N == max(N)); else MLlabel = 1; end tree.Raction = Nt(MLlabel); tree.Laction = Nt(MLlabel); else %Split the node according to the splitting criterion deltaI = zeros(1,Ni); split_point = zeros(1,Ni); op = optimset('Display', 'off'); for i = 1:Ni, split_point(i) = fminbnd('CARTfunctions', region(i*2-1), region(i*2), op, features, targets, i, split_type); I(i) = feval('CARTfunctions', split_point(i), features, targets, i, split_type); end [m, dim] = min(I); loc = split_point(dim); %So, the split is to be on dimention 'dim' at location 'loc' indices = 1:M; tree.Raction= ['features(' num2str(dim) ',indices) > ' num2str(loc)]; tree.Laction= ['features(' num2str(dim) ',indices) <= ' num2str(loc)]; in_right = find(eval(tree.Raction)); in_left = find(eval(tree.Laction)); if isempty(in_right) | isempty(in_left) %No possible split found tree.right = []; tree.left = []; if (length(Nt) ~= 1), MLlabel = find(N == max(N)); else MLlabel = 1; end tree.Raction = Nt(MLlabel); tree.Laction = Nt(MLlabel); else %...It's possible to build new nodes tree.right = make_tree(features(:,in_right), targets(in_right), Dlength, split_type, inc_node, region); tree.left = make_tree(features(:,in_left), targets(in_left), Dlength, split_type, inc_node, region); end end在Julia中的决策树包:https://github.com/bensadeghi/DecisionTree.jl/blob/master/README.md