问题描述:
胜利大逃亡
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 33433 Accepted Submission(s): 12347
Problem Description
Ignatius被魔王抓走了,有一天魔王出差去了,这可是Ignatius逃亡的好机会.
魔王住在一个城堡里,城堡是一个A*B*C的立方体,可以被表示成A个B*C的矩阵,刚开始Ignatius被关在(0,0,0)的位置,离开城堡的门在(A-1,B-1,C-1)的位置,现在知道魔王将在T分钟后回到城堡,Ignatius每分钟能从一个坐标走到相邻的六个坐标中的其中一个.现在给你城堡的地图,请你计算出Ignatius能否在魔王回来前离开城堡(只要走到出口就算离开城堡,如果走到出口的时候魔王刚好回来也算逃亡成功),如果可以请输出需要多少分钟才能离开,如果不能则输出-1.
Input
输入数据的第一行是一个正整数K,表明测试数据的数量.每组测试数据的第一行是四个正整数A,B,C和T(1<=A,B,C<=50,1<=T<=1000),它们分别代表城堡的大小和魔王回来的时间.然后是A块输入数据(先是第0块,然后是第1块,第2块......),每块输入数据有B行,每行有C个正整数,代表迷宫的布局,其中0代表路,1代表墙.(如果对输入描述不清楚,可以参考Sample Input中的迷宫描述,它表示的就是上图中的迷宫)
特别注意:本题的测试数据非常大,请使用scanf输入,我不能保证使用cin能不超时.在本OJ上请使用Visual C++提交.
Output
对于每组测试数据,如果Ignatius能够在魔王回来前离开城堡,那么请输出他最少需要多少分钟,否则输出-1.
Sample Input
1
3 3 4 20
0 1 1 1
0 0 1 1
0 1 1 1
1 1 1 1
1 0 0 1
0 1 1 1
0 0 0 0
0 1 1 0
0 1 1 0
Sample Output
11
思路分析:
地图是3维的。搞清楚各个变量之间的关系就ok。
常规的bfs姿势。
ac代码:
#include<bits/stdc++.h>
using namespace std;
bool mapp[52][52][52];
typedef long long ll;
int T,A,B,C,n;
struct Node
{
int x,y,z,step;
};
int dx[]={1,-1,0,0,0,0};
int dy[]={0,0,1,-1,0,0};
int dz[]={0,0,0,0,1,-1};
bool vis[52][52][52];
bool ok(int i,int j,int k) //该点是否可以走。
{
if(i>0 && i<=A && j>0 && j<=B && k>0 && k<=C && !mapp[i][j][k])
return true;
return false;
}
ll bfs()
{
queue<Node> Q;
Node a;
a.x=1;
a.y=1;
a.z=1;
a.step=0;
Q.push(a);
vis[1][1][1]=1;
while(!Q.empty())
{
Node now;
now=Q.front();
Q.pop();
if(now.x==A && now.y==B && now.z==C)
return now.step;
for(int i=0;i<6;i++)
{
Node next;
next.x=now.x+dx[i];
next.y=now.y+dy[i];
next.z=now.z+dz[i];
if(!vis[next.x][next.y][next.z] && ok(next.x,next.y,next.z))
{
next.step=now.step+1;
Q.push(next);
vis[next.x][next.y][next.z]=1;
}
}
}
}
int main()
{
ios::sync_with_stdio(false); //取消cin和scanf的同步,cin速度会更快。
cin>>n;
while(n--)
{
memset(vis,0,sizeof(vis));
int i,j,k;
cin>>A>>B>>C>>T;
for(i=1;i<=A;i++)
{
for(j=1;j<=B;j++)
{
for(k=1;k<=C;k++)
{
cin>>mapp[i][j][k];
}
}
}
ll sum=0;
sum=bfs();
if(sum>T)
cout<<-1<<endl;
else
cout<<sum<<endl;
}
return 0;
}
转载请注明原文地址: https://ju.6miu.com/read-1201022.html