Description
Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is an almost arithmetical progression, if its elements can be represented as:
a1 = p, where p is some integer;ai = ai - 1 + ( - 1)i + 1·q(i > 1), where q is some integer.Right now Gena has a piece of paper with sequence b, consisting of n integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.
Sequence s1, s2, ..., sk is a subsequence of sequence b1, b2, ..., bn, if there is such increasing sequence of indexesi1, i2, ..., ik(1 ≤ i1 < i2 < ... < ik ≤ n), that bij = sj. In other words, sequence s can be obtained from b by crossing out some elements.
Input
The first line contains integer n(1 ≤ n ≤ 4000). The next line contains n integers b1, b2, ..., bn(1 ≤ bi ≤ 106).
Output
Print a single integer — the length of the required longest subsequence.
Sample Input
Input 2 3 5 Output 2 Input 4 10 20 10 30 Output 3Hint
In the first test the sequence actually is the suitable subsequence.
In the second test the following subsequence fits: 10, 20, 10.
dp的式子很简单,不过比较难想。
用一个二维数组记录。
——>>状态:dp[i][j] 表示满足条件的最后两个数是 ai 和 aj 的子序列长度
状态转移方程:dp[i][j] = dp[last][i] + 1;(last 是小于 i 的但离 i 最近的 a[last] == a[j] 成立的位置)
#include <iostream> #include <bits/stdc++.h> using namespace std; const int MAXN=4000+10; int a[MAXN],dp[MAXN][MAXN]; int main() { int n; scanf("%d",&n); int i,j,last; for(i=1;i<=n;++i) { scanf("%d",&a[i]); } int ans=0; dp[0][0]=0; for(j=1;j<=n;++j) for(i=0,last=0;i<j;++i) { dp[i][j]=dp[last][i]+1;//dp[0][j]都会默认是1,dp[1][j]默认就会是2 if(a[i]==a[j])last=i; ans=max(ans,dp[i][j]); } printf("%d\n",ans); return 0; }