42. Trapping Rain Water

    xiaoxiao2023-03-24  4

    Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

    For example,  Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

    The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

    此题牛客网讲过但是还是忘记怎么做了 看了一下视频才想起来

    如下一个数组 左边开始7  3...右边开始  4  5   

    左边最大值7 右边最大值5  显然这时右侧第二个4的存水量可以确定,是5-4=1  因为因为左边的最大值至少是7 右边最大是5 短板限制在右侧的5.

    故计左右两侧的最大值,哪一侧的最大值小就结算哪一侧,两侧同时往中间逼近,O(1)时间可以实现遍历 并得出结果

    73 .........4 5  

    public class Solution { public int trap(int[] height) { if(height==null||height.length==0) return 0; int Lmax=height[0]; int Rmax=height[height.length-1]; int i=1,j=height.length-2; int count=0; while(i<=j){ if(Lmax<=Rmax){ if(height[i]<=Lmax) count+=(Lmax-height[i++]); else Lmax=height[i++]; } else{ if(height[j]<=Rmax) count+=(Rmax-height[j--]); else Rmax=height[j--]; } } return count; } }

    转载请注明原文地址: https://ju.6miu.com/read-1201761.html
    最新回复(0)