Android Volley完全解析,带你从源码的角度理解Volley

    xiaoxiao2024-12-24  18

    转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/17656437

    经过前三篇文章的学习,Volley的用法我们已经掌握的差不多了,但是对于Volley的工作原理,恐怕有很多朋友还不是很清楚。因此,本篇文章中我们就来一起阅读一下Volley的源码,将它的工作流程整体地梳理一遍。同时,这也是Volley系列的最后一篇文章了。

    其实,Volley的官方文档中本身就附有了一张Volley的工作流程图,如下图所示。

    多数朋友突然看到一张这样的图,应该会和我一样,感觉一头雾水吧?没错,目前我们对Volley背后的工作原理还没有一个概念性的理解,直接就来看这张图自然会有些吃力。不过没关系,下面我们就去分析一下Volley的源码,之后再重新来看这张图就会好理解多了。

    说起分析源码,那么应该从哪儿开始看起呢?这就要回顾一下Volley的用法了,还记得吗,使用Volley的第一步,首先要调用Volley.newRequestQueue(context)方法来获取一个RequestQueue对象,那么我们自然要从这个方法开始看起了,代码如下所示:

    [java]  view plain  copy   public static RequestQueue newRequestQueue(Context context) {       return newRequestQueue(context, null);   }   这个方法仅仅只有一行代码,只是调用了 newRequestQueue()的方法重载,并给第二个参数传入null。那我们看下带有两个参数的newRequestQueue()方法中的代码,如下所示: [java]  view plain  copy   public static RequestQueue newRequestQueue(Context context, HttpStack stack) {       File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);       String userAgent = "volley/0";       try {           String packageName = context.getPackageName();           PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);           userAgent = packageName + "/" + info.versionCode;       } catch (NameNotFoundException e) {       }       if (stack == null) {           if (Build.VERSION.SDK_INT >= 9) {               stack = new HurlStack();           } else {               stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));           }       }       Network network = new BasicNetwork(stack);       RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);       queue.start();       return queue;   }   可以看到,这里在第10行判断如果stack是等于null的,则去创建一个HttpStack对象,这里会判断如果手机系统版本号是大于9的,则创建一个HurlStack的实例,否则就创建一个HttpClientStack的实例。实际上 HurlStack的内部就是使用HttpURLConnection进行网络通讯的,而HttpClientStack的内部则是使用HttpClient进行网络通讯的,这里为什么这样选择呢?可以参考我之前翻译的一篇文章Android访问网络,使用HttpURLConnection还是HttpClient?

    创建好了HttpStack之后,接下来又创建了一个Network对象,它是用于根据传入的HttpStack对象来处理网络请求的,紧接着new出一个RequestQueue对象,并调用它的start()方法进行启动,然后将RequestQueue返回,这样newRequestQueue()的方法就执行结束了。

    那么RequestQueue的start()方法内部到底执行了什么东西呢?我们跟进去瞧一瞧:

    [java]  view plain  copy   public void start() {       stop();  // Make sure any currently running dispatchers are stopped.       // Create the cache dispatcher and start it.       mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);       mCacheDispatcher.start();       // Create network dispatchers (and corresponding threads) up to the pool size.       for (int i = 0; i < mDispatchers.length; i++) {           NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,                   mCache, mDelivery);           mDispatchers[i] = networkDispatcher;           networkDispatcher.start();       }   }   这里先是创建了一个CacheDispatcher的实例,然后调用了它的start()方法,接着在一个for循环里去创建NetworkDispatcher的实例,并分别调用它们的start()方法。这里的CacheDispatcher和NetworkDispatcher都是继承自Thread的,而默认情况下for循环会执行四次,也就是说当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来, 其中 CacheDispatcher是缓存线程,NetworkDispatcher是网络请求线程。

    得到了RequestQueue之后,我们只需要构建出相应的Request,然后调用RequestQueue的add()方法将Request传入就可以完成网络请求操作了,那么不用说,add()方法的内部肯定有着非常复杂的逻辑,我们来一起看一下:

    [java]  view plain  copy   public <T> Request<T> add(Request<T> request) {       // Tag the request as belonging to this queue and add it to the set of current requests.       request.setRequestQueue(this);       synchronized (mCurrentRequests) {           mCurrentRequests.add(request);       }       // Process requests in the order they are added.       request.setSequence(getSequenceNumber());       request.addMarker("add-to-queue");       // If the request is uncacheable, skip the cache queue and go straight to the network.       if (!request.shouldCache()) {           mNetworkQueue.add(request);           return request;       }       // Insert request into stage if there's already a request with the same cache key in flight.       synchronized (mWaitingRequests) {           String cacheKey = request.getCacheKey();           if (mWaitingRequests.containsKey(cacheKey)) {               // There is already a request in flight. Queue up.               Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);               if (stagedRequests == null) {                   stagedRequests = new LinkedList<Request<?>>();               }               stagedRequests.add(request);               mWaitingRequests.put(cacheKey, stagedRequests);               if (VolleyLog.DEBUG) {                   VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);               }           } else {               // Insert 'null' queue for this cacheKey, indicating there is now a request in               // flight.               mWaitingRequests.put(cacheKey, null);               mCacheQueue.add(request);           }           return request;       }   }   可以看到,在第11行的时候会判断当前的请求是否可以缓存,如果不能缓存则在第12行直接将这条请求加入网络请求队列,可以缓存的话则在第33行将这条请求加入缓存队列。在默认情况下,每条请求都是可以缓存的,当然我们也可以调用Request的setShouldCache(false)方法来改变这一默认行为。

    OK,那么既然默认每条请求都是可以缓存的,自然就被添加到了缓存队列中,于是一直在后台等待的缓存线程就要开始运行起来了,我们看下CacheDispatcher中的run()方法,代码如下所示:

    [java]  view plain  copy   public class CacheDispatcher extends Thread {          ……          @Override       public void run() {           if (DEBUG) VolleyLog.v("start new dispatcher");           Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);           // Make a blocking call to initialize the cache.           mCache.initialize();           while (true) {               try {                   // Get a request from the cache triage queue, blocking until                   // at least one is available.                   final Request<?> request = mCacheQueue.take();                   request.addMarker("cache-queue-take");                   // If the request has been canceled, don't bother dispatching it.                   if (request.isCanceled()) {                       request.finish("cache-discard-canceled");                       continue;                   }                   // Attempt to retrieve this item from cache.                   Cache.Entry entry = mCache.get(request.getCacheKey());                   if (entry == null) {                       request.addMarker("cache-miss");                       // Cache miss; send off to the network dispatcher.                       mNetworkQueue.put(request);                       continue;                   }                   // If it is completely expired, just send it to the network.                   if (entry.isExpired()) {                       request.addMarker("cache-hit-expired");                       request.setCacheEntry(entry);                       mNetworkQueue.put(request);                       continue;                   }                   // We have a cache hit; parse its data for delivery back to the request.                   request.addMarker("cache-hit");                   Response<?> response = request.parseNetworkResponse(                           new NetworkResponse(entry.data, entry.responseHeaders));                   request.addMarker("cache-hit-parsed");                   if (!entry.refreshNeeded()) {                       // Completely unexpired cache hit. Just deliver the response.                       mDelivery.postResponse(request, response);                   } else {                       // Soft-expired cache hit. We can deliver the cached response,                       // but we need to also send the request to the network for                       // refreshing.                       request.addMarker("cache-hit-refresh-needed");                       request.setCacheEntry(entry);                       // Mark the response as intermediate.                       response.intermediate = true;                       // Post the intermediate response back to the user and have                       // the delivery then forward the request along to the network.                       mDelivery.postResponse(request, response, new Runnable() {                           @Override                           public void run() {                               try {                                   mNetworkQueue.put(request);                               } catch (InterruptedException e) {                                   // Not much we can do about this.                               }                           }                       });                   }               } catch (InterruptedException e) {                   // We may have been interrupted because it was time to quit.                   if (mQuit) {                       return;                   }                   continue;               }           }       }   }   代码有点长,我们只挑重点看。首先在11行可以看到一个while(true)循环,说明缓存线程始终是在运行的,接着在第23行会尝试从缓存当中取出响应结果,如何为空的话则把这条请求加入到网络请求队列中,如果不为空的话再判断该缓存是否已过期,如果已经过期了则同样把这条请求加入到网络请求队列中,否则就认为不需要重发网络请求,直接使用缓存中的数据即可。之后会在第39行调用Request的 parseNetworkResponse()方法来对数据进行解析,再往后就是将解析出来的数据进行回调了,这部分代码我们先跳过,因为它的逻辑和NetworkDispatcher后半部分的逻辑是基本相同的,那么我们等下合并在一起看就好了,先来看一下NetworkDispatcher中是怎么处理网络请求队列的,代码如下所示: [java]  view plain  copy   public class NetworkDispatcher extends Thread {       ……       @Override       public void run() {           Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);           Request<?> request;           while (true) {               try {                   // Take a request from the queue.                   request = mQueue.take();               } catch (InterruptedException e) {                   // We may have been interrupted because it was time to quit.                   if (mQuit) {                       return;                   }                   continue;               }               try {                   request.addMarker("network-queue-take");                   // If the request was cancelled already, do not perform the                   // network request.                   if (request.isCanceled()) {                       request.finish("network-discard-cancelled");                       continue;                   }                   addTrafficStatsTag(request);                   // Perform the network request.                   NetworkResponse networkResponse = mNetwork.performRequest(request);                   request.addMarker("network-http-complete");                   // If the server returned 304 AND we delivered a response already,                   // we're done -- don't deliver a second identical response.                   if (networkResponse.notModified && request.hasHadResponseDelivered()) {                       request.finish("not-modified");                       continue;                   }                   // Parse the response here on the worker thread.                   Response<?> response = request.parseNetworkResponse(networkResponse);                   request.addMarker("network-parse-complete");                   // Write to cache if applicable.                   // TODO: Only update cache metadata instead of entire record for 304s.                   if (request.shouldCache() && response.cacheEntry != null) {                       mCache.put(request.getCacheKey(), response.cacheEntry);                       request.addMarker("network-cache-written");                   }                   // Post the response back.                   request.markDelivered();                   mDelivery.postResponse(request, response);               } catch (VolleyError volleyError) {                   parseAndDeliverNetworkError(request, volleyError);               } catch (Exception e) {                   VolleyLog.e(e, "Unhandled exception %s", e.toString());                   mDelivery.postError(request, new VolleyError(e));               }           }       }   }   同样地,在第7行我们看到了类似的while(true)循环,说明网络请求线程也是在不断运行的。在第28行的时候会调用Network的performRequest()方法来去发送网络请求,而Network是一个接口,这里具体的实现是BasicNetwork,我们来看下它的 performRequest()方法,如下所示: [java]  view plain  copy   public class BasicNetwork implements Network {       ……       @Override       public NetworkResponse performRequest(Request<?> request) throws VolleyError {           long requestStart = SystemClock.elapsedRealtime();           while (true) {               HttpResponse httpResponse = null;               byte[] responseContents = null;               Map<String, String> responseHeaders = new HashMap<String, String>();               try {                   // Gather headers.                   Map<String, String> headers = new HashMap<String, String>();                   addCacheHeaders(headers, request.getCacheEntry());                   httpResponse = mHttpStack.performRequest(request, headers);                   StatusLine statusLine = httpResponse.getStatusLine();                   int statusCode = statusLine.getStatusCode();                   responseHeaders = convertHeaders(httpResponse.getAllHeaders());                   // Handle cache validation.                   if (statusCode == HttpStatus.SC_NOT_MODIFIED) {                       return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED,                               request.getCacheEntry() == null ? null : request.getCacheEntry().data,                               responseHeaders, true);                   }                   // Some responses such as 204s do not have content.  We must check.                   if (httpResponse.getEntity() != null) {                     responseContents = entityToBytes(httpResponse.getEntity());                   } else {                     // Add 0 byte response as a way of honestly representing a                     // no-content request.                     responseContents = new byte[0];                   }                   // if the request is slow, log it.                   long requestLifetime = SystemClock.elapsedRealtime() - requestStart;                   logSlowRequests(requestLifetime, request, responseContents, statusLine);                   if (statusCode < 200 || statusCode > 299) {                       throw new IOException();                   }                   return new NetworkResponse(statusCode, responseContents, responseHeaders, false);               } catch (Exception e) {                   ……               }           }       }   }  

    这段方法中大多都是一些网络请求细节方面的东西,我们并不需要太多关心,需要注意的是在第14行调用了HttpStack的performRequest()方法,这里的HttpStack就是在一开始调用newRequestQueue()方法是创建的实例,默认情况下如果系统版本号大于9就创建的HurlStack对象,否则创建HttpClientStack对象。前面已经说过,这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,我们就不再跟进去阅读了,之后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。

    在NetworkDispatcher中收到了NetworkResponse这个返回值后又会调用Request的parseNetworkResponse()方法来解析NetworkResponse中的数据,以及将数据写入到缓存,这个方法的实现是交给Request的子类来完成的,因为不同种类的Request解析的方式也肯定不同。还记得我们在上一篇文章中学习的自定义Request的方式吗?其中parseNetworkResponse()这个方法就是必须要重写的。

    在解析完了NetworkResponse中的数据之后,又会调用ExecutorDelivery的postResponse()方法来回调解析出的数据,代码如下所示:

    [java]  view plain  copy   public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {       request.markDelivered();       request.addMarker("post-response");       mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));   }   其中,在mResponsePoster的execute()方法中传入了一个ResponseDeliveryRunnable对象,就可以保证该对象中的run()方法就是在主线程当中运行的了,我们看下run()方法中的代码是什么样的: [java]  view plain  copy   private class ResponseDeliveryRunnable implements Runnable {       private final Request mRequest;       private final Response mResponse;       private final Runnable mRunnable;          public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {           mRequest = request;           mResponse = response;           mRunnable = runnable;       }          @SuppressWarnings("unchecked")       @Override       public void run() {           // If this request has canceled, finish it and don't deliver.           if (mRequest.isCanceled()) {               mRequest.finish("canceled-at-delivery");               return;           }           // Deliver a normal response or error, depending.           if (mResponse.isSuccess()) {               mRequest.deliverResponse(mResponse.result);           } else {               mRequest.deliverError(mResponse.error);           }           // If this is an intermediate response, add a marker, otherwise we're done           // and the request can be finished.           if (mResponse.intermediate) {               mRequest.addMarker("intermediate-response");           } else {               mRequest.finish("done");           }           // If we have been provided a post-delivery runnable, run it.           if (mRunnable != null) {               mRunnable.run();           }      }   }  

    代码虽然不多,但我们并不需要行行阅读,抓住重点看即可。其中在第22行调用了Request的deliverResponse()方法,有没有感觉很熟悉?没错,这个就是我们在自定义Request时需要重写的另外一个方法,每一条网络请求的响应都是回调到这个方法中,最后我们再在这个方法中将响应的数据回调到Response.Listener的onResponse()方法中就可以了。

    好了,到这里我们就把Volley的完整执行流程全部梳理了一遍,你是不是已经感觉已经很清晰了呢?对了,还记得在文章一开始的那张流程图吗,刚才还不能理解,现在我们再来重新看下这张图:

    其中蓝色部分代表主线程,绿色部分代表缓存线程,橙色部分代表网络线程。我们在主线程中调用RequestQueue的add()方法来添加一条网络请求,这条请求会先被加入到缓存队列当中,如果发现可以找到相应的缓存结果就直接读取缓存并解析,然后回调给主线程。如果在缓存中没有找到结果,则将这条请求加入到网络请求队列中,然后处理发送HTTP请求,解析响应结果,写入缓存,并回调主线程。

    转载请注明原文地址: https://ju.6miu.com/read-1294942.html
    最新回复(0)