HDU1402 A * B Problem Plus 大数乘法 FFT(快速傅里叶变换)优化

    xiaoxiao2025-01-09  10

    HDU1402 A * B Problem Plus 大数乘法 FFT(快速傅里叶变换)优化

    题目

    长度不超过5000,据称高精度会TLE,必须 O(nlogn) ,FFT首敲。

    代码

    bit_reverse_swap(a, n)参考自算法导论30.3的迭代实现,非递归方式完成下图过程。

    #include <cstdio> #include <cmath> #include <complex> #include <cstring> using namespace std; const double PI(acos(-1.0)); typedef complex<double> C; const int N = (1<<17); int ans[N]; C a[N], b[N]; char s[N], t[N]; void bit_reverse_swap(C *a, int n) { for(int i = 1, j = n>>1, k; i < n-1; ++i) { if(i < j) swap(a[i], a[j]); //tricky for(k = n>>1; j >= k; j -= k, k >>= 1) //inspect the highest "1" ; j+=k; } } void FFT(C* a, int n, int t) { bit_reverse_swap(a, n); for(int i = 2; i <= n; i <<= 1) { C wi(cos(2.0*t*PI/i), sin(2.0*t*PI/i)); for (int j = 0; j < n; j += i) { C w(1); for (int k = j, h = i >> 1; k < j + h; ++k) { C t = w*a[k+h], u = a[k]; a[k] = u + t; a[k+h] = u - t; w *= wi; } } } if (t == -1) { for (int i = 0; i < n; ++i) { a[i] /= n; } } } int trans(int x) { return 1 << int(ceil(log(x)/log(2) - 1e-9)); //math.h/log() 以e为底 } int main() { int n, m, l; for(; ~scanf("%s%s", s, t); ) { n = strlen(s); m = strlen(t); l = trans(n + m - 1); //n次*m次不超过n+m-1次 for (int i = 0; i < n; ++i) a[i] = C(s[n-1-i]-'0'); for (int i = n; i < l; ++i) a[i] = C(0); for (int i = 0; i < m; ++i) b[i] = C(t[m-1-i]-'0'); for (int i = m; i < l; ++i) b[i] = C(0); FFT(a, l, 1);//把A和B换成点值表达 FFT(b, l, 1); for (int i = 0; i < l; ++i)//点值做乘法 a[i] *= b[i]; FFT(a, l, -1);//逆DFT for (int i = 0; i < l; ++i) ans[i] = (int)(a[i].real() + 0.5); ans[l] = 0; // error-prone :'l' -> '1' for (int i = 0; i < l; ++i) { ans[i+1] += ans[i] / 10; ans[i] %= 10; } int p = l; for(; p && !ans[p]; --p); for(; ~p; putchar(ans[p--] + '0')); puts(""); } return 0; }
    转载请注明原文地址: https://ju.6miu.com/read-1295316.html
    最新回复(0)