图的遍历及最小生成树(prim,kruskal)的实现

    xiaoxiao2025-01-25  4

    关于图的介绍网上很多,这里就不介绍了,直接上代码: 最小生成树算法可以看看:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html

    #include <iostream> #include <iomanip> #include <climits> #include <queue> using namespace std; #define MAX_VERTEX_NUM 20 // 顶点数量上限 typedef char VerType; // 顶点结构 , 顶点的字母名称 typedef int ArcType; // 边的结构 , 权值 typedef enum {DG, UDG} GKind; // 图类型,{有向图,无向图} // 图的存储结构 typedef struct { int verNum, arcNum; // 顶点数量, 边数量 GKind kind; // 图类型 VerType vertex[MAX_VERTEX_NUM]; //顶点 ArcType arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; //边 }Graph; void CreateGraphByArray(Graph &G); // 创建图G (通过预定义的数组) void CreateGraph(Graph &G); // 创建图G (通过输入) int VertexLoc(const Graph &G, const VerType &v); // 获取顶点v在图G中的位置 void PrintGraphArcs(const Graph &G); // 输出图G邻接矩阵 void DFS(const Graph G, int vi, bool visited[]); // 图G的深度优先遍历的准备 void DFS_Traverse(const Graph &G); // 图G的深度优先遍历 void BFS_Traverse(const Graph &G); // 图G的广度优先遍历 void MinSpanTree_Prim(const Graph &G); // 输出图G最小生成树 (Prim算法) void MinSpanTree_Kruskal(const Graph &G); // 输出图G最小生成树 (kruskal算法) int main() { Graph G; //CreateGraph(G); CreateGraphByArray(G); cout << "图的邻接矩阵: " << endl; PrintGraphArcs(G); cout << "图的深度优先遍历:"; DFS_Traverse(G); cout << endl; cout << "图的广度优先遍历:"; BFS_Traverse(G); cout << endl; cout << "最小生成树:(prim算法)" << endl; MinSpanTree_Prim(G); cout << endl; cout << "最小生成树:(kruskal算法)" << endl; MinSpanTree_Kruskal(G); cout << endl; return 0; } void CreateGraphByArray(Graph &G) { //数据例子取自课本Page168 G.kind = UDG; const int vn = 6; VerType V[vn + 1] = {"ABCDEF"}; const int en = 10; VerType V1[en + 1] = {"ADFEBADFEB"}; VerType V2[en + 1] = {"CCCCCDFEBA"}; ArcType E[en] = {1,5,4,6,5,5,2,6,3,6}; // 输入顶点 G.verNum = vn; for(int i = 0; i < G.verNum; ++ i){ G.vertex[i] = V[i]; } // 初始化邻接矩阵 for(int vi = 0; vi < G.verNum; ++ vi){ for(int vj = 0; vj < G.verNum; ++ vj){ G.arcs[vi][vj] = INT_MAX; } } // 输入边 G.arcNum = en; for(int i = 0; i < G.arcNum; ++ i){ VerType &v1 = V1[i], &v2 = V2[i]; ArcType &e = E[i]; int vi = VertexLoc(G, v1), vj = VertexLoc(G, v2); if(vi == G.verNum || vj == G.verNum){ continue; } if(UDG == G.kind){ G.arcs[vi][vj] = G.arcs[vj][vi] = e; }else{ G.arcs[vi][vj] = e; } } } void CreateGraph(Graph &G) { // 输入图类型 int k; cin >> k; if(k == 0){ G.kind = DG; }else{ G.kind = UDG; } // 输入顶点 cin >> G.verNum; for(int i = 0; i < G.verNum; ++ i){ cin >> G.vertex[i]; } // 初始化邻接矩阵 for(int vi = 0; vi < G.verNum; ++ vi){ for(int vj = 0; vj < G.verNum; ++ vj){ G.arcs[vi][vj] = INT_MAX; } } // 输入边 VerType v1, v2; ArcType e; cin >> G.arcNum; for(int i = 0; i < G.arcNum; ++ i){ cin >> v1 >> v2 >> e; int vi = VertexLoc(G, v1), vj = VertexLoc(G, v2); if(vi == G.verNum || vj == G.verNum){ continue; } if(UDG == G.kind){ G.arcs[vi][vj] = G.arcs[vj][vi] = e; }else{ G.arcs[vi][vj] = e; } } } int VertexLoc(const Graph &G, const VerType &v) { for(int i = 0; i < G.verNum; ++ i){ if(G.vertex[i] == v){ return i; } } return G.verNum; } void PrintGraphArcs(const Graph &G) { for(int vi = 0; vi < G.verNum; ++ vi){ for(int vj = 0; vj < G.verNum; ++ vj){ if(G.arcs[vi][vj] == INT_MAX){ cout << setw(5) << "INF"; }else{ cout << setw(5) << G.arcs[vi][vj]; } } cout << endl; } } void DFS(const Graph G, int vi, bool visited[]) { cout << G.vertex[vi] << " "; visited[vi] = true; for(int vj = 0; vj < G.verNum; ++ vj){ if(G.arcs[vi][vj] != INT_MAX && !visited[vj]){ DFS(G, vj, visited); } } } void DFS_Traverse(const Graph &G) { bool visited[G.verNum]; for(int vi = 0; vi < G.verNum; ++ vi){ visited[vi] = false; } for(int vi = 0; vi < G.verNum; ++ vi){ if(!visited[vi]){ DFS(G, vi, visited); } } } void BFS_Traverse(const Graph &G) { bool visited[G.verNum]; for(int i = 0; i < G.verNum; ++ i){ visited[i] = false; } for(int i = 0; i < G.verNum; ++ i){ if(!visited[i]){ queue<int> que; que.push(i); visited[i] = true; while(!que.empty()){ int vi = que.front(); cout << G.vertex[vi] << " "; for(int vj = 0; vj < G.verNum; ++ vj){ if(G.arcs[vi][vj] != INT_MAX && !visited[vj]){ que.push(vj); visited[vj] = true; } } que.pop(); } } } } void MinSpanTree_Prim(const Graph &G) { //辅助结构, closeedge[i]={j, w}表示顶点vi权值最小的边,vj为边顶点, w为权值 struct { int adjvex; // 最小边顶点 ArcType lowcost; // 最小边上的权值 }closedge[G.verNum]; int k = 0; for(int j = 0; j < G.verNum; ++ j){ if(j != k){ closedge[j] = {k, G.arcs[k][j]}; } } closedge[k].lowcost = 0; //表示顶点已经被选入Enew for(int i = 1; i < G.verNum; ++ i){ /* 从Vnew选取权值最小的边 */ k = -1; for(int j = 0; j < G.verNum; ++ j){ if(closedge[j].lowcost != 0){ if(k == -1){ k = j; }else if(closedge[j].lowcost < closedge[k].lowcost){ k = j; } } } int v0 = k, u0 = closedge[k].adjvex; cout << G.vertex[u0] << " - " << G.vertex[v0] << endl; //输出边 closedge[k].lowcost = 0; //将该顶点选入Enew /* 更新与新顶点相连的顶点最小权值 */ for(int j = 0; j < G.verNum; ++ j){ if(G.arcs[k][j] < closedge[j].lowcost){ closedge[j] = {k, G.arcs[k][j]}; } } } } void MinSpanTree_Kruskal(const Graph &G) { //辅助数组 (kruskal算法) struct { int head; // 边的起点 int tail; // 边的终点 ArcType lowcost; // 边上的权值 }edge[G.arcNum], temp; //初始化edge if(UDG == G.kind){ for(int i = 0, vi = 0; vi < G.verNum; ++ vi){ for(int vj = 0; vj < vi; ++ vj){ if(G.arcs[vi][vj] != INT_MAX){ edge[i].head = vi; edge[i].tail = vj; edge[i ++].lowcost = G.arcs[vi][vj]; } } } }else{ for(int i = 0, vi = 0; vi < G.verNum; ++ vi){ for(int vj = 0; vj < G.verNum; ++ vj){ if(G.arcs[vi][vj] != INT_MAX){ edge[i].head = vi; edge[i].tail = vj; edge[i ++].lowcost = G.arcs[vi][vj]; } } } } //并根据权值从小到大排序 for(int i = 1; i <= G.arcNum; ++ i){ for(int j = 0; j < G.arcNum - i; ++ j){ if(edge[j].lowcost > edge[j + 1].lowcost){ temp = edge[j]; edge[j] = edge[j + 1]; edge[j + 1] = temp; } } } int vexset[G.verNum]; for(int i = 0; i < G.verNum; ++ i){ vexset[i] = i; } for(int i = 0; i < G.arcNum; ++ i){ int vi = edge[i].head, vj = edge[i].tail; int vs1 = vexset[vi], vs2 = vexset[vj]; if(vs1 != vs2){ cout << G.vertex[vi] << " - " << G.vertex[vj] << endl; for(int j = 0; j < G.verNum; ++ j){ if(vexset[j] == vs2){ vexset[j] = vs1; } } } } }

    对于这个图:

    最小生成树的图形为:


    所运行的结果如下:

    转载请注明原文地址: https://ju.6miu.com/read-1295757.html
    最新回复(0)