转载请注明出处:http://blog.csdn.net/u012469987/。
见网上第K大多数只给思路,没给实现,我就来填坑了。
update 2017-09-23 有同学反馈说面试遇到这个题,博文给了助攻,哈预料之中。
Top K 和第K大基本等价,以下我们以第K大为例且假设第K大一定存在,Top K 可以在第k大基础上稍微改动获得。 本文介绍6种方法,只考虑实现功能,不做异常判断,面试的话快排和最小堆的方法比较不错,测试提交的话可以去Leetcode,或者直接拿最下面的数据生成代码去对拍跑。
快排的思想 近似O(n)小根堆 O(nlogk)计数排序 O(n)二分 O(nlogn)暴力式选择/冒泡排序 O(kn)真暴力排序O(nlogn)数据生成代码调用降序快排的partition函数,设区间为[low,high],返回index,则index左边都是大于data[index]的。 1. 若index及index左边数字有k个则data[index]就是第k大,index及其左边元素为Top K元素 2. 左边数字大于k个则继续在[low,index]里找 3. 左边数字小于k个则去右边[index+1,high]找 k - 左边数字个数
#include <cstdio> #include <iostream> using namespace std; const int maxn = 1e5 + 5; //改为 data[high] >= key 和 data[low] <= key 则为第k小 int part(int *data, int low, int high) { int key = data[low]; while (low < high) { while (low < high && data[high] <= key) high--; data[low] = data[high]; while (low < high && data[low] >= key) low++; data[high] = data[low] ; } data[low] = key; return low; } int k_th(int *data, int k, int low, int high) { int pos = part(data, low, high); int cnt = pos - low + 1; //[low,pos]元素个数 if (cnt == k) return data[pos]; else if (cnt < k) return k_th(data, k - cnt, pos + 1, high); else return k_th(data, k, low, pos); } int k_th(int *data, int n, int k) { if(k < 1 || k > n) return -1; return k_th(data, k, 0, n - 1); //闭区间 //遍历data[0,k)即可获得top K,但不能保证有序 } int main() { // int data[] = {1, 5, 6, 7, 3, 2, 10, 9, 0, 231, 3214, 61}; // int n = sizeof(data) / sizeof(int); // int k = 2; // cout << k_th(data, n, k) << endl; // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int n, k, data[maxn]; std::ios::sync_with_stdio(false); while (cin >> n >> k) { for (int i = 0; i < n; ++i) { cin >> data[i]; } cout << k_th(data, n, k) << endl; } return 0; }维护一个k个元素的小根堆,保持堆里元素为最大的K个且堆顶为第k大(堆里最小的),扫一遍数据,若堆里个数小于k则插入,否则看新的数和堆顶数大小关系: 1. 若新来的数小于等于堆顶,即新元素比Top K里最小的还小,则新来的数显然不可能是前k大 2. 若新来的数大于堆顶,则删掉堆顶,将新数字放到堆里且调整堆来保持堆的属性
由于实现堆代码量较多,我们可以用C++的优先队列、set等代替手工堆偷跑,当然这里也提供了手动实现版。
#include <cstdio> #include <vector> #include <queue> #include <iostream> using namespace std; const int maxn = 1e5 + 5; //维持一个k大小的最小堆,根据新元素和堆顶大小决定要不要加入堆且删堆顶 // O(nlogk) int biggest_k_th(int *data, int n, int k) { priority_queue<int, vector<int>, greater<int> >q; //小根堆 while (!q.empty()) q.pop(); for (int i = 0; i < n; ++i) { if (q.size() < k) { q.push(data[i]); } else if (data[i] > q.top()) { q.pop(); q.push(data[i]); } } //取k次q.top()且pop()k次即为有序的前K大 return q.top(); } int smallest_k_th(int *data, int n, int k) { priority_queue<int>q; //大根堆 while (!q.empty()) q.pop(); for (int i = 0; i < n; ++i) { if (q.size() < k) { q.push(data[i]); } else if (data[i] < q.top()) { q.pop(); q.push(data[i]); } } return q.top(); } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); std::ios::sync_with_stdio(false); int n, k, data[maxn]; while (cin >> n >> k) { for (int i = 0; i < n; ++i) { cin >> data[i]; } cout << biggest_k_th(data, n, k) << endl; } return 0; }手动实现版
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int maxn = 1e5 + 5; const int maxK = 1e5 + 5; int heapCnt = 0; int heap[maxK]; void adjust(int *heap, int begin, int end) { //[begin,end) int cur = begin; int son = 2 * cur + 1; while (son < end) { if (son + 1 < end && heap[son] > heap[son + 1]) son++; if (heap[cur] < heap[son]) return; swap(heap[son], heap[cur]); cur = son; son = 2 * cur + 1; } } void buildHeap(int *heap, int k) { //[heap,heap+k) 开区间 for (int i = k / 2; i >= 0; --i) { adjust(heap, i, k); } } int k_th(int *data, int n, int k) { heapCnt = 0; for (int i = 0; i < n; ++i) { if (heapCnt < k) { heap[heapCnt++] = data[i]; if (heapCnt == k) { buildHeap(heap, k); //data[0,k)共k个 } } else { if (data[i] > heap[0]) { heap[0] = data[i]; adjust(heap, 0, heapCnt); } } } return heap[0]; } int main() { // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); int n, k, data[maxn]; std::ios::sync_with_stdio(false); while (cin >> n >> k) { for (int i = 0; i < n; ++i) { cin >> data[i]; } cout << k_th(data, n, k) << endl; } return 0; }按照计数排序思想给数据的值计数,再从数据的最大值往最小值遍历,则总次数大于等于k的那个数为第k大,见代码一目了然。 优点:速度快且不用库也代码量少,妥妥的O(n) 缺点:只适用于数值不大的情况,当然你用hashmap这类库计数的话就没这问题了。
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int maxn = 1e5 + 5; const int maxVal = 1e5 + 5; //O(n) 适用于数据值不大的情况 int k_th(int *data, int n, int k) { int mmin = data[0], mmax = data[0]; int times[maxVal]; memset(times,0,sizeof(times)); for (int i = 0; i < n; ++i) { mmin = min(mmin, data[i]); mmax = max(mmax, data[i]); times[data[i]]++; } int cnt = 0; for (int i = mmax; i >= mmin; --i) { cnt += times[i]; if (cnt >= k) { // >= 是因为第k大的数可能有若干个,找第一个 return i; } //反过来遍历则为第k小 //每次输出times[i]次i,注意下边界就出了有序前k大 } return -1; } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int n, k, data[maxn]; std::ios::sync_with_stdio(false); while (cin >> n >> k) { for (int i = 0; i < n; ++i) { cin >> data[i]; } cout<< k_th(data, n, k) <<endl; } return 0; }假设第K大的数字是val,那么val肯定在一个数字区间里,我们叫 [l,r] ,我们就二分这个区间和val。 最开始l=所有数的最小值,r=最大值,假设当前值是mid,如果所有数据中大于等于mid的数字至少k个,说明当前数值可能是答案(若mid存在的情况则将区间调为[mid,r],mid不存在的话就改为[mid+1,r]),否则mid偏大,在[l,mid-1]里查找;二分不会的可见这篇文章。 二分本身是需要有序的,但我们二分的是答案值,int数字本身就有排序效果。
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int maxn = 1e5 + 5; const int maxVal = 1e5 + 5; bool ok(int *data, int n, int k, int mid) { int cnt = 0; for (int i = 0; i < n; ++i) { if (data[i] >= mid) cnt++; } return cnt >= k; } int k_th(int *data, int n, int k) { int mmin = data[0], mmax = data[0]; bool vis[maxVal]; memset(vis, false, sizeof(vis)); for (int i = 0; i < n; ++i) { mmin = min(mmin, data[i]); mmax = max(mmax, data[i]); vis[data[i]] = true; } int l = mmin, r = mmax; while (l < r) { int mid = (l + r + 1) / 2; if (ok(data, n, k, mid)) { if (!vis[mid]) l = mid + 1; else l = mid; } else { r = mid - 1; } } return l; } int main() { // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); int n, k, data[maxn]; std::ios::sync_with_stdio(false); while (cin >> n >> k) { for (int i = 0; i < n; ++i) { cin >> data[i]; } cout << k_th(data, n, k) << endl; } return 0; }特慢做法:排序k个,每次遍历n个元素,O(k*n)
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int maxn = 1e5 + 5; int k_th(int *data, int n, int k) { for (int i = 0; i < k; ++i) { for (int j = 0; j < n - i - 1; ++j) { if (data[j] > data[j + 1]) { swap(data[j], data[j + 1]); } } } return data[n-k]; } int main() { // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); int n, k, data[maxn]; std::ios::sync_with_stdio(false); while (cin >> n >> k) { for (int i = 0; i < n; ++i) { cin >> data[i]; } cout << k_th(data, n, k) << endl; } return 0; }排完取 data[k],这么暴力就不说了。
生成10组数据,每组一个n(范围:[a_n,b_n]),然后n个数 [a,b]。
#include <cstdio> #include <cmath> #include <cstdlib> using namespace std; int rand_ab(int a, int b) { //[a,b] return a + rand() % (b + 1 - a); } void make(){ int a_n = 10000, b_n = 100000; int a = 1, b = 10000; for (int i = 0; i < 10; ++i) { int n = rand_ab(a_n, b_n); printf("%d ", n); int a_k = 1, b_k = n; printf("%d\n", rand_ab(a_k,b_k)); printf("%d", rand_ab(a, b)); for (int i = 1; i < n; ++i) { printf(" %d", rand_ab(a, b)); } printf("\n"); } } int main() { // freopen("out.txt","w",stdout); make(); return 0; }