把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
class Solution { public: int minNumberInRotateArray(vector<int> rotateArray) { /* 数组为空的时候,直接返回0 */ if (rotateArray.size() == 0) return 0; /* 采用二分法查找 */ int result = 0; int start = 0; int mid = start; int end = rotateArray.size() - 1; while (rotateArray[end] <= rotateArray[start]) { if (end - start == 1) { mid = end; break; } mid = start + (end - start)/2; /* 如果三个数都一样的时候,采取顺序查找的方式 */ if (rotateArray[mid] == rotateArray[start] && rotateArray[mid] == rotateArray[end]) { result = rotateArray[start]; for (int i = start + 1; i <= end; i++) { if (result > rotateArray[i]) result = rotateArray[i]; } return result; } /* 注意判断条件 */ if (rotateArray[mid] >= rotateArray[start]) start = mid; else if(rotateArray[mid] <= rotateArray[end]) end = mid; } return rotateArray[mid]; } };
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。
n<=39
/* 递归实现方式 */ class Solution { public: int Fibonacci(int n) { /* f(n) = f(n - 1) + f(n - 2) n >= 3 f(n) = 1 (n = 1 or n = 2) f(n) = 0 (n = 0) */ if (n == 0) return 0; if (n == 1 || n == 2) return 1; return Fibonacci(n - 1) + Fibonacci(n - 2); } }; #include <iostream> #include <vector> using namespace std; class Solution { public: int Fibonacci(int n) { //若n==0,则返回0 if(n == 0) return 0; //若n==1或2,则返回1 if(n<=2) return 1; //若n>=3,则迭代求斐波拉契数列 int *array = new int[n+1]; array[0] = 0; array[1] = 1; array[2] = 1; int i = 3; while(i <= n) { array[i] = array[i-1] + array[i-2]; i++; } int temp = array[i-1]; delete [] array; array = NULL; return temp; } }; /* 简单测试 */ int main() { Solution s; cout<<s.Fibonacci(10)<<endl; return 0; }
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法
// 递归实现 class Solution { public: int jumpFloor(int number) { if(number == 1) return 1; if (number == 2) return 2; return jumpFloor(number - 1) + jumpFloor(number - 2); } }; //迭代实现 class Solution { public: int jumpFloor(int number) { if(number == 1) return 1; if (number == 2) return 2; //return jumpFloor(number - 1) + jumpFloor(number - 2); int *array = new int[number + 1]; array[0] = 0; array[1] = 1; array[2] = 2; int i = 3; while (i <= number) { array[i] = array[i - 1] + array[i - 2]; if (i == number) break; i++; } int tmp = array[i]; delete []array; array = NULL; return tmp; } };
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法
跳法为:F(n) = 2^(n-1)
class Solution { public: int jumpFloorII(int number) { if(number == 0) return 0; if(number == 1) return 1; int temp = 1; while(number>1) { temp *= 2; number--; } return temp; } };
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
分析:f(n) = f(n-1)+f(n-2); f(1) = 1; f(2) = 2;
class Solution { public: int rectCover(int number) { if(number == 0) return 0; if(number == 1) return 1; if(number == 2) return 2; int first = 1; int second = 2; int add = 0; while(number >= 3) { add = first + second; first = second; second = add; number--; } return add; } };