#include "precomp.hpp"
namespace cv
{
template<
typename T,
typename ST>
struct RowSum :
public BaseRowFilter
{
RowSum(
int _ksize,
int _anchor )
{
ksize = _ksize;
anchor = _anchor;
}
void operator()(
const uchar* src, uchar* dst,
int width,
int cn)
{
const T* S = (
const T*)src;
ST* D = (ST*)dst;
int i =
0, k, ksz_cn = ksize*cn;
width = (width -
1)*cn;
for( k =
0; k < cn; k++, S++, D++ )
{
ST s =
0;
for( i =
0; i < ksz_cn; i += cn )
s += S[i];
D[
0] = s;
for( i =
0; i < width; i += cn )
{
s += S[i + ksz_cn] - S[i];
D[i+cn] = s;
}
}
}
};
template<
typename ST,
typename T>
struct ColumnSum :
public BaseColumnFilter
{
ColumnSum(
int _ksize,
int _anchor,
double _scale )
{
ksize = _ksize;
anchor = _anchor;
scale = _scale;
sumCount =
0;
}
void reset() { sumCount =
0; }
void operator()(
const uchar** src, uchar* dst,
int dststep,
int count,
int width)
{
int i;
ST* SUM;
bool haveScale = scale !=
1;
double _scale = scale;
if( width != (
int)sum.size() )
{
sum.resize(width);
sumCount =
0;
}
SUM = &sum[
0];
if( sumCount ==
0 )
{
for( i =
0; i < width; i++ )
SUM[i] =
0;
for( ; sumCount < ksize -
1; sumCount++, src++ )
{
const ST* Sp = (
const ST*)src[
0];
for( i =
0; i <= width -
2; i +=
2 )
{
ST s0 = SUM[i] + Sp[i], s1 = SUM[i+
1] + Sp[i+
1];
SUM[i] = s0; SUM[i+
1] = s1;
}
for( ; i < width; i++ )
SUM[i] += Sp[i];
}
}
else
{
CV_Assert( sumCount == ksize-
1 );
src += ksize-
1;
}
for( ; count--; src++ )
{
const ST* Sp = (
const ST*)src[
0];
const ST* Sm = (
const ST*)src[
1-ksize];
T* D = (T*)dst;
if( haveScale )
{
for( i =
0; i <= width -
2; i +=
2 )
{
ST s0 = SUM[i] + Sp[i], s1 = SUM[i+
1] + Sp[i+
1];
D[i] = saturate_cast<T>(s0*_scale);
D[i+
1] = saturate_cast<T>(s1*_scale);
s0 -= Sm[i]; s1 -= Sm[i+
1];
SUM[i] = s0; SUM[i+
1] = s1;
}
for( ; i < width; i++ )
{
ST s0 = SUM[i] + Sp[i];
D[i] = saturate_cast<T>(s0*_scale);
SUM[i] = s0 - Sm[i];
}
}
else
{
for( i =
0; i <= width -
2; i +=
2 )
{
ST s0 = SUM[i] + Sp[i], s1 = SUM[i+
1] + Sp[i+
1];
D[i] = saturate_cast<T>(s0);
D[i+
1] = saturate_cast<T>(s1);
s0 -= Sm[i]; s1 -= Sm[i+
1];
SUM[i] = s0; SUM[i+
1] = s1;
}
for( ; i < width; i++ )
{
ST s0 = SUM[i] + Sp[i];
D[i] = saturate_cast<T>(s0);
SUM[i] = s0 - Sm[i];
}
}
dst += dststep;
}
}
double scale;
int sumCount;
vector<ST> sum;
};
Ptr<BaseRowFilter> getRowSumFilter(
int srcType,
int sumType,
int ksize,
int anchor)
{
int sdepth = CV_MAT_DEPTH(srcType), ddepth = CV_MAT_DEPTH(sumType);
CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(srcType) );
if( anchor <
0 )
anchor = ksize/
2;
if( sdepth == CV_8U && ddepth == CV_32S )
return Ptr<BaseRowFilter>(
new RowSum<uchar,
int>(ksize, anchor));
if( sdepth == CV_8U && ddepth == CV_64F )
return Ptr<BaseRowFilter>(
new RowSum<uchar,
double>(ksize, anchor));
if( sdepth == CV_16U && ddepth == CV_32S )
return Ptr<BaseRowFilter>(
new RowSum<ushort,
int>(ksize, anchor));
if( sdepth == CV_16U && ddepth == CV_64F )
return Ptr<BaseRowFilter>(
new RowSum<ushort,
double>(ksize, anchor));
if( sdepth == CV_16S && ddepth == CV_32S )
return Ptr<BaseRowFilter>(
new RowSum<
short,
int>(ksize, anchor));
if( sdepth == CV_32S && ddepth == CV_32S )
return Ptr<BaseRowFilter>(
new RowSum<
int,
int>(ksize, anchor));
if( sdepth == CV_16S && ddepth == CV_64F )
return Ptr<BaseRowFilter>(
new RowSum<
short,
double>(ksize, anchor));
if( sdepth == CV_32F && ddepth == CV_64F )
return Ptr<BaseRowFilter>(
new RowSum<
float,
double>(ksize, anchor));
if( sdepth == CV_64F && ddepth == CV_64F )
return Ptr<BaseRowFilter>(
new RowSum<
double,
double>(ksize, anchor));
CV_Error_( CV_StsNotImplemented,
(
"Unsupported combination of source format (=%d), and buffer format (=%d)",
srcType, sumType));
return Ptr<BaseRowFilter>(
0);
}
Ptr<BaseColumnFilter> getColumnSumFilter(
int sumType,
int dstType,
int ksize,
int anchor,
double scale)
{
int sdepth = CV_MAT_DEPTH(sumType), ddepth = CV_MAT_DEPTH(dstType);
CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(dstType) );
if( anchor <
0 )
anchor = ksize/
2;
if( ddepth == CV_8U && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(
new ColumnSum<
int, uchar>(ksize, anchor, scale));
if( ddepth == CV_8U && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(
new ColumnSum<
double, uchar>(ksize, anchor, scale));
if( ddepth == CV_16U && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(
new ColumnSum<
int, ushort>(ksize, anchor, scale));
if( ddepth == CV_16U && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(
new ColumnSum<
double, ushort>(ksize, anchor, scale));
if( ddepth == CV_16S && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(
new ColumnSum<
int,
short>(ksize, anchor, scale));
if( ddepth == CV_16S && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(
new ColumnSum<
double,
short>(ksize, anchor, scale));
if( ddepth == CV_32S && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(
new ColumnSum<
int,
int>(ksize, anchor, scale));
if( ddepth == CV_32F && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(
new ColumnSum<
int,
float>(ksize, anchor, scale));
if( ddepth == CV_32F && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(
new ColumnSum<
double,
float>(ksize, anchor, scale));
if( ddepth == CV_64F && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(
new ColumnSum<
int,
double>(ksize, anchor, scale));
if( ddepth == CV_64F && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(
new ColumnSum<
double,
double>(ksize, anchor, scale));
CV_Error_( CV_StsNotImplemented,
(
"Unsupported combination of sum format (=%d), and destination format (=%d)",
sumType, dstType));
return Ptr<BaseColumnFilter>(
0);
}
Ptr<FilterEngine> createBoxFilter(
int srcType,
int dstType, Size ksize,
Point anchor,
bool normalize,
int borderType )
{
int sdepth = CV_MAT_DEPTH(srcType);
int cn = CV_MAT_CN(srcType), sumType = CV_64F;
if( sdepth < CV_32S && (!normalize ||
ksize.width*ksize.height <= (sdepth == CV_8U ? (
1<<
23) :
sdepth == CV_16U ? (
1 <<
15) : (
1 <<
16))) )
sumType = CV_32S;
sumType = CV_MAKETYPE( sumType, cn );
Ptr<BaseRowFilter> rowFilter = getRowSumFilter(srcType, sumType, ksize.width, anchor.x );
Ptr<BaseColumnFilter> columnFilter = getColumnSumFilter(sumType,
dstType, ksize.height, anchor.y, normalize ?
1./(ksize.width*ksize.height) :
1);
return Ptr<FilterEngine>(
new FilterEngine(Ptr<BaseFilter>(
0), rowFilter, columnFilter,
srcType, dstType, sumType, borderType ));
}
void boxFilter(
const Mat& src, Mat& dst,
int ddepth,
Size ksize, Point anchor,
bool normalize,
int borderType )
{
int sdepth = src.depth(), cn = src.channels();
if( ddepth <
0 )
ddepth = sdepth;
dst.create( src.size(), CV_MAKETYPE(ddepth, cn) );
if( borderType != BORDER_CONSTANT && normalize )
{
if( src.rows ==
1 )
ksize.height =
1;
if( src.cols ==
1 )
ksize.width =
1;
}
Ptr<FilterEngine> f = createBoxFilter( src.type(), dst.type(),
ksize, anchor, normalize, borderType );
f->apply( src, dst );
}
void blur(
const Mat& src, CV_OUT Mat& dst,
Size ksize, Point anchor,
int borderType )
{
boxFilter( src, dst, -
1, ksize, anchor,
true, borderType );
}
Mat getGaussianKernel(
int n,
double sigma,
int ktype )
{
const int SMALL_GAUSSIAN_SIZE =
7;
static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] =
{
{
1.f},
{
0.25f,
0.5f,
0.25f},
{
0.0625f,
0.25f,
0.375f,
0.25f,
0.0625f},
{
0.03125f,
0.109375f,
0.21875f,
0.28125f,
0.21875f,
0.109375f,
0.03125f}
};
const float* fixed_kernel = n %
2 ==
1 && n <= SMALL_GAUSSIAN_SIZE && sigma <=
0 ?
small_gaussian_tab[n>>
1] :
0;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
Mat kernel(n,
1, ktype);
float* cf = (
float*)kernel.data;
double* cd = (
double*)kernel.data;
double sigmaX = sigma >
0 ? sigma : ((n-
1)*
0.5 -
1)*
0.3 +
0.8;
double scale2X = -
0.5/(sigmaX*sigmaX);
double sum =
0;
int i;
for( i =
0; i < n; i++ )
{
double x = i - (n-
1)*
0.5;
double t = fixed_kernel ? (
double)fixed_kernel[i] :
std::
exp(scale2X*x*x);
if( ktype == CV_32F )
{
cf[i] = (
float)t;
sum += cf[i];
}
else
{
cd[i] = t;
sum += cd[i];
}
}
sum =
1./sum;
for( i =
0; i < n; i++ )
{
if( ktype == CV_32F )
cf[i] = (
float)(cf[i]*sum);
else
cd[i] *= sum;
}
return kernel;
}
Ptr<FilterEngine> createGaussianFilter(
int type, Size ksize,
double sigma1,
double sigma2,
int borderType )
{
int depth = CV_MAT_DEPTH(type);
if( sigma2 <=
0 )
sigma2 = sigma1;
if( ksize.width <=
0 && sigma1 >
0 )
ksize.width = cvRound(sigma1*(depth == CV_8U ?
3 :
4)*
2 +
1)|
1;
if( ksize.height <=
0 && sigma2 >
0 )
ksize.height = cvRound(sigma2*(depth == CV_8U ?
3 :
4)*
2 +
1)|
1;
CV_Assert( ksize.width >
0 && ksize.width %
2 ==
1 &&
ksize.height >
0 && ksize.height %
2 ==
1 );
sigma1 =
std::max( sigma1,
0. );
sigma2 =
std::max( sigma2,
0. );
Mat kx = getGaussianKernel( ksize.width, sigma1,
std::max(depth, CV_32F) );
Mat ky;
if( ksize.height == ksize.width &&
std::
abs(sigma1 - sigma2) < DBL_EPSILON )
ky = kx;
else
ky = getGaussianKernel( ksize.height, sigma2,
std::max(depth, CV_32F) );
return createSeparableLinearFilter( type, type, kx, ky, Point(-
1,-
1),
0, borderType );
}
void GaussianBlur(
const Mat& src, Mat& dst, Size ksize,
double sigma1,
double sigma2,
int borderType )
{
if( ksize.width ==
1 && ksize.height ==
1 )
{
src.copyTo(dst);
return;
}
dst.create( src.size(), src.type() );
if( borderType != BORDER_CONSTANT )
{
if( src.rows ==
1 )
ksize.height =
1;
if( src.cols ==
1 )
ksize.width =
1;
}
Ptr<FilterEngine> f = createGaussianFilter( src.type(), ksize, sigma1, sigma2, borderType );
f->apply( src, dst );
}
#if _MSC_VER >= 1200
#pragma warning( disable: 4244 )
#endif
typedef ushort HT;
typedef struct
{
HT coarse[
16];
HT fine[
16][
16];
} Histogram;
#if CV_SSE2
#define MEDIAN_HAVE_SIMD 1
static inline void histogram_add_simd(
const HT x[
16], HT y[
16] )
{
const __m128i* rx = (
const __m128i*)x;
__m128i* ry = (__m128i*)y;
__m128i r0 = _mm_add_epi16(_mm_load_si128(ry+
0),_mm_load_si128(rx+
0));
__m128i r1 = _mm_add_epi16(_mm_load_si128(ry+
1),_mm_load_si128(rx+
1));
_mm_store_si128(ry+
0, r0);
_mm_store_si128(ry+
1, r1);
}
static inline void histogram_sub_simd(
const HT x[
16], HT y[
16] )
{
const __m128i* rx = (
const __m128i*)x;
__m128i* ry = (__m128i*)y;
__m128i r0 = _mm_sub_epi16(_mm_load_si128(ry+
0),_mm_load_si128(rx+
0));
__m128i r1 = _mm_sub_epi16(_mm_load_si128(ry+
1),_mm_load_si128(rx+
1));
_mm_store_si128(ry+
0, r0);
_mm_store_si128(ry+
1, r1);
}
#else
#define MEDIAN_HAVE_SIMD 0
#endif
static inline void histogram_add(
const HT x[
16], HT y[
16] )
{
int i;
for( i =
0; i <
16; ++i )
y[i] = (HT)(y[i] + x[i]);
}
static inline void histogram_sub(
const HT x[
16], HT y[
16] )
{
int i;
for( i =
0; i <
16; ++i )
y[i] = (HT)(y[i] - x[i]);
}
static inline void histogram_muladd(
int a,
const HT x[
16],
HT y[
16] )
{
for(
int i =
0; i <
16; ++i )
y[i] = (HT)(y[i] + a * x[i]);
}
static void
medianBlur_8u_O1(
const Mat& _src, Mat& _dst,
int ksize )
{
#define HOP(h,x,op) \
h.coarse[x>>
4] op, \
*((HT*)h.fine + x) op
#define COP(c,j,x,op) \
h_coarse[
16*(n*c+j) + (x>>
4) ] op, \
h_fine[
16 * (n*(
16*c+(x>>
4)) + j) + (x &
0xF) ] op
int cn = _dst.channels(), m = _dst.rows, r = (ksize-
1)/
2;
size_t sstep = _src.step, dstep = _dst.step;
Histogram CV_DECL_ALIGNED(
16) H[
4];
HT CV_DECL_ALIGNED(
16) luc[
4][
16];
int STRIPE_SIZE =
std::min( _dst.cols,
512/cn );
vector<HT> _h_coarse(
1 *
16 * (STRIPE_SIZE +
2*r) * cn +
16);
vector<HT> _h_fine(
16 *
16 * (STRIPE_SIZE +
2*r) * cn +
16);
HT* h_coarse = alignPtr(&_h_coarse[
0],
16);
HT* h_fine = alignPtr(&_h_fine[
0],
16);
#if MEDIAN_HAVE_SIMD
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif
for(
int x =
0; x < _dst.cols; x += STRIPE_SIZE )
{
int i, j, k, c, n =
std::min(_dst.cols - x, STRIPE_SIZE) + r*
2;
const uchar* src = _src.data + x*cn;
uchar* dst = _dst.data + (x - r)*cn;
memset( h_coarse,
0,
16*n*cn*
sizeof(h_coarse[
0]) );
memset( h_fine,
0,
16*
16*n*cn*
sizeof(h_fine[
0]) );
for( c =
0; c < cn; c++ )
{
for( j =
0; j < n; j++ )
COP( c, j, src[cn*j+c], += r+
2 );
for( i =
1; i < r; i++ )
{
const uchar* p = src + sstep*
std::min(i, m-
1);
for ( j =
0; j < n; j++ )
COP( c, j, p[cn*j+c], ++ );
}
}
for( i =
0; i < m; i++ )
{
const uchar* p0 = src + sstep *
std::max(
0, i-r-
1 );
const uchar* p1 = src + sstep *
std::min( m-
1, i+r );
memset( H,
0, cn*
sizeof(H[
0]) );
memset( luc,
0, cn*
sizeof(luc[
0]) );
for( c =
0; c < cn; c++ )
{
for( j =
0; j < n; j++ )
{
COP( c, j, p0[j*cn + c], -- );
COP( c, j, p1[j*cn + c], ++ );
}
for( k =
0; k <
16; ++k )
histogram_muladd(
2*r+
1, &h_fine[
16*n*(
16*c+k)], &H[c].fine[k][
0] );
#if MEDIAN_HAVE_SIMD
if( useSIMD )
{
for( j =
0; j <
2*r; ++j )
histogram_add_simd( &h_coarse[
16*(n*c+j)], H[c].coarse );
for( j = r; j < n-r; j++ )
{
int t =
2*r*r +
2*r, b, sum =
0;
HT* segment;
histogram_add_simd( &h_coarse[
16*(n*c +
std::min(j+r,n-
1))], H[c].coarse );
for ( k =
0; k <
16 ; ++k )
{
sum += H[c].coarse[k];
if ( sum > t )
{
sum -= H[c].coarse[k];
break;
}
}
assert( k <
16 );
if ( luc[c][k] <= j-r )
{
memset( &H[c].fine[k],
0,
16 *
sizeof(HT) );
for ( luc[c][k] = j-r; luc[c][k] < MIN(j+r+
1,n); ++luc[c][k] )
histogram_add_simd( &h_fine[
16*(n*(
16*c+k)+luc[c][k])], H[c].fine[k] );
if ( luc[c][k] < j+r+
1 )
{
histogram_muladd( j+r+
1 - n, &h_fine[
16*(n*(
16*c+k)+(n-
1))], &H[c].fine[k][
0] );
luc[c][k] = (HT)(j+r+
1);
}
}
else
{
for ( ; luc[c][k] < j+r+
1; ++luc[c][k] )
{
histogram_sub_simd( &h_fine[
16*(n*(
16*c+k)+MAX(luc[c][k]-
2*r-
1,
0))], H[c].fine[k] );
histogram_add_simd( &h_fine[
16*(n*(
16*c+k)+MIN(luc[c][k],n-
1))], H[c].fine[k] );
}
}
histogram_sub_simd( &h_coarse[
16*(n*c+MAX(j-r,
0))], H[c].coarse );
segment = H[c].fine[k];
for ( b =
0; b <
16 ; b++ )
{
sum += segment[b];
if ( sum > t )
{
dst[dstep*i+cn*j+c] = (uchar)(
16*k + b);
break;
}
}
assert( b <
16 );
}
}
else
#endif
{
for( j =
0; j <
2*r; ++j )
histogram_add( &h_coarse[
16*(n*c+j)], H[c].coarse );
for( j = r; j < n-r; j++ )
{
int t =
2*r*r +
2*r, b, sum =
0;
HT* segment;
histogram_add( &h_coarse[
16*(n*c +
std::min(j+r,n-
1))], H[c].coarse );
for ( k =
0; k <
16 ; ++k )
{
sum += H[c].coarse[k];
if ( sum > t )
{
sum -= H[c].coarse[k];
break;
}
}
assert( k <
16 );
if ( luc[c][k] <= j-r )
{
memset( &H[c].fine[k],
0,
16 *
sizeof(HT) );
for ( luc[c][k] = j-r; luc[c][k] < MIN(j+r+
1,n); ++luc[c][k] )
histogram_add( &h_fine[
16*(n*(
16*c+k)+luc[c][k])], H[c].fine[k] );
if ( luc[c][k] < j+r+
1 )
{
histogram_muladd( j+r+
1 - n, &h_fine[
16*(n*(
16*c+k)+(n-
1))], &H[c].fine[k][
0] );
luc[c][k] = (HT)(j+r+
1);
}
}
else
{
for ( ; luc[c][k] < j+r+
1; ++luc[c][k] )
{
histogram_sub( &h_fine[
16*(n*(
16*c+k)+MAX(luc[c][k]-
2*r-
1,
0))], H[c].fine[k] );
histogram_add( &h_fine[
16*(n*(
16*c+k)+MIN(luc[c][k],n-
1))], H[c].fine[k] );
}
}
histogram_sub( &h_coarse[
16*(n*c+MAX(j-r,
0))], H[c].coarse );
segment = H[c].fine[k];
for ( b =
0; b <
16 ; b++ )
{
sum += segment[b];
if ( sum > t )
{
dst[dstep*i+cn*j+c] = (uchar)(
16*k + b);
break;
}
}
assert( b <
16 );
}
}
}
}
}
#undef HOP
#undef COP
}
#if _MSC_VER >= 1200
#pragma warning( default: 4244 )
#endif
static void
medianBlur_8u_Om(
const Mat& _src, Mat& _dst,
int m )
{
#define N 16
int zone0[
4][N];
int zone1[
4][N*N];
int x, y;
int n2 = m*m/
2;
Size size = _dst.size();
const uchar* src = _src.data;
uchar* dst = _dst.data;
int src_step = (
int)_src.step, dst_step = (
int)_dst.step;
int cn = _src.channels();
const uchar* src_max = src + size.height*src_step;
#define UPDATE_ACC01( pix, cn, op ) \
{ \
int p = (pix); \
zone1[cn][p] op; \
zone0[cn][p >>
4] op; \
}
for( x =
0; x < size.width; x++, src += cn, dst += cn )
{
uchar* dst_cur = dst;
const uchar* src_top = src;
const uchar* src_bottom = src;
int k, c;
int src_step1 = src_step, dst_step1 = dst_step;
if( x %
2 !=
0 )
{
src_bottom = src_top += src_step*(size.height-
1);
dst_cur += dst_step*(size.height-
1);
src_step1 = -src_step1;
dst_step1 = -dst_step1;
}
memset( zone0,
0,
sizeof(zone0[
0])*cn );
memset( zone1,
0,
sizeof(zone1[
0])*cn );
for( y =
0; y <= m/
2; y++ )
{
for( c =
0; c < cn; c++ )
{
if( y >
0 )
{
for( k =
0; k < m*cn; k += cn )
UPDATE_ACC01( src_bottom[k+c], c, ++ );
}
else
{
for( k =
0; k < m*cn; k += cn )
UPDATE_ACC01( src_bottom[k+c], c, += m/
2+
1 );
}
}
if( (src_step1 >
0 && y < size.height-
1) ||
(src_step1 <
0 && size.height-y-
1 >
0) )
src_bottom += src_step1;
}
for( y =
0; y < size.height; y++, dst_cur += dst_step1 )
{
for( c =
0; c < cn; c++ )
{
int s =
0;
for( k =
0; ; k++ )
{
int t = s + zone0[c][k];
if( t > n2 )
break;
s = t;
}
for( k *= N; ;k++ )
{
s += zone1[c][k];
if( s > n2 )
break;
}
dst_cur[c] = (uchar)k;
}
if( y+
1 == size.height )
break;
if( cn ==
1 )
{
for( k =
0; k < m; k++ )
{
int p = src_top[k];
int q = src_bottom[k];
zone1[
0][p]--;
zone0[
0][p>>
4]--;
zone1[
0][q]++;
zone0[
0][q>>
4]++;
}
}
else if( cn ==
3 )
{
for( k =
0; k < m*
3; k +=
3 )
{
UPDATE_ACC01( src_top[k],
0, -- );
UPDATE_ACC01( src_top[k+
1],
1, -- );
UPDATE_ACC01( src_top[k+
2],
2, -- );
UPDATE_ACC01( src_bottom[k],
0, ++ );
UPDATE_ACC01( src_bottom[k+
1],
1, ++ );
UPDATE_ACC01( src_bottom[k+
2],
2, ++ );
}
}
else
{
assert( cn ==
4 );
for( k =
0; k < m*
4; k +=
4 )
{
UPDATE_ACC01( src_top[k],
0, -- );
UPDATE_ACC01( src_top[k+
1],
1, -- );
UPDATE_ACC01( src_top[k+
2],
2, -- );
UPDATE_ACC01( src_top[k+
3],
3, -- );
UPDATE_ACC01( src_bottom[k],
0, ++ );
UPDATE_ACC01( src_bottom[k+
1],
1, ++ );
UPDATE_ACC01( src_bottom[k+
2],
2, ++ );
UPDATE_ACC01( src_bottom[k+
3],
3, ++ );
}
}
if( (src_step1 >
0 && src_bottom + src_step1 < src_max) ||
(src_step1 <
0 && src_bottom + src_step1 >= src) )
src_bottom += src_step1;
if( y >= m/
2 )
src_top += src_step1;
}
}
#undef N
#undef UPDATE_ACC
}
struct MinMax8u
{
typedef uchar value_type;
typedef int arg_type;
enum { SIZE =
1 };
arg_type load(
const uchar* ptr) {
return *ptr; }
void store(uchar* ptr, arg_type val) { *ptr = (uchar)val; }
void operator()(arg_type& a, arg_type& b)
const
{
int t = CV_FAST_CAST_8U(a - b);
b += t; a -= t;
}
};
struct MinMax16u
{
typedef ushort value_type;
typedef int arg_type;
enum { SIZE =
1 };
arg_type load(
const ushort* ptr) {
return *ptr; }
void store(ushort* ptr, arg_type val) { *ptr = (ushort)val; }
void operator()(arg_type& a, arg_type& b)
const
{
arg_type t = a;
a =
std::min(a, b);
b =
std::max(b, t);
}
};
struct MinMax16s
{
typedef short value_type;
typedef int arg_type;
enum { SIZE =
1 };
arg_type load(
const short* ptr) {
return *ptr; }
void store(
short* ptr, arg_type val) { *ptr = (
short)val; }
void operator()(arg_type& a, arg_type& b)
const
{
arg_type t = a;
a =
std::min(a, b);
b =
std::max(b, t);
}
};
struct MinMax32f
{
typedef float value_type;
typedef float arg_type;
enum { SIZE =
1 };
arg_type load(
const float* ptr) {
return *ptr; }
void store(
float* ptr, arg_type val) { *ptr = val; }
void operator()(arg_type& a, arg_type& b)
const
{
arg_type t = a;
a =
std::min(a, b);
b =
std::max(b, t);
}
};
#if CV_SSE2
struct MinMaxVec8u
{
typedef uchar value_type;
typedef __m128i arg_type;
enum { SIZE =
16 };
arg_type load(
const uchar* ptr) {
return _mm_loadu_si128((
const __m128i*)ptr); }
void store(uchar* ptr, arg_type val) { _mm_storeu_si128((__m128i*)ptr, val); }
void operator()(arg_type& a, arg_type& b)
const
{
arg_type t = a;
a = _mm_min_epu8(a, b);
b = _mm_max_epu8(b, t);
}
};
struct MinMaxVec16u
{
typedef ushort value_type;
typedef __m128i arg_type;
enum { SIZE =
8 };
arg_type load(
const ushort* ptr) {
return _mm_loadu_si128((
const __m128i*)ptr); }
void store(ushort* ptr, arg_type val) { _mm_storeu_si128((__m128i*)ptr, val); }
void operator()(arg_type& a, arg_type& b)
const
{
arg_type t = _mm_subs_epu16(a, b);
a = _mm_subs_epu16(a, t);
b = _mm_adds_epu16(b, t);
}
};
struct MinMaxVec16s
{
typedef short value_type;
typedef __m128i arg_type;
enum { SIZE =
8 };
arg_type load(
const short* ptr) {
return _mm_loadu_si128((
const __m128i*)ptr); }
void store(
short* ptr, arg_type val) { _mm_storeu_si128((__m128i*)ptr, val); }
void operator()(arg_type& a, arg_type& b)
const
{
arg_type t = a;
a = _mm_min_epi16(a, b);
b = _mm_max_epi16(b, t);
}
};
struct MinMaxVec32f
{
typedef float value_type;
typedef __m128 arg_type;
enum { SIZE =
4 };
arg_type load(
const float* ptr) {
return _mm_loadu_ps(ptr); }
void store(
float* ptr, arg_type val) { _mm_storeu_ps(ptr, val); }
void operator()(arg_type& a, arg_type& b)
const
{
arg_type t = a;
a = _mm_min_ps(a, b);
b = _mm_max_ps(b, t);
}
};
#else
typedef MinMax8u MinMaxVec8u;
typedef MinMax16u MinMaxVec16u;
typedef MinMax16s MinMaxVec16s;
typedef MinMax32f MinMaxVec32f;
#endif
template<
class Op,
class VecOp>
static void
medianBlur_SortNet(
const Mat& _src, Mat& _dst,
int m )
{
typedef typename Op::value_type T;
typedef typename Op::arg_type WT;
typedef typename VecOp::arg_type VT;
const T* src = (
const T*)_src.data;
T* dst = (T*)_dst.data;
int sstep = (
int)(_src.step/
sizeof(T));
int dstep = (
int)(_dst.step/
sizeof(T));
Size size = _dst.size();
int i, j, k, cn = _src.channels();
Op op;
VecOp vop;
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
if( m ==
3 )
{
if( size.width ==
1 || size.height ==
1 )
{
int len = size.width + size.height -
1;
int sdelta = size.height ==
1 ? cn : sstep;
int sdelta0 = size.height ==
1 ?
0 : sstep - cn;
int ddelta = size.height ==
1 ? cn : dstep;
for( i =
0; i < len; i++, src += sdelta0, dst += ddelta )
for( j =
0; j < cn; j++, src++ )
{
WT p0 = src[i >
0 ? -sdelta :
0];
WT p1 = src[
0];
WT p2 = src[i < len -
1 ? sdelta :
0];
op(p0, p1); op(p1, p2); op(p0, p1);
dst[j] = (T)p1;
}
return;
}
size.width *= cn;
for( i =
0; i < size.height; i++, dst += dstep )
{
const T* row0 = src +
std::max(i -
1,
0)*sstep;
const T* row1 = src + i*sstep;
const T* row2 = src +
std::min(i +
1, size.height-
1)*sstep;
int limit = useSIMD ? cn : size.width;
for(j =
0;; )
{
for( ; j < limit; j++ )
{
int j0 = j >= cn ? j - cn : j;
int j2 = j < size.width - cn ? j + cn : j;
WT p0 = row0[j0], p1 = row0[j], p2 = row0[j2];
WT p3 = row1[j0], p4 = row1[j], p5 = row1[j2];
WT p6 = row2[j0], p7 = row2[j], p8 = row2[j2];
op(p1, p2); op(p4, p5); op(p7, p8); op(p0, p1);
op(p3, p4); op(p6, p7); op(p1, p2); op(p4, p5);
op(p7, p8); op(p0, p3); op(p5, p8); op(p4, p7);
op(p3, p6); op(p1, p4); op(p2, p5); op(p4, p7);
op(p4, p2); op(p6, p4); op(p4, p2);
dst[j] = (T)p4;
}
if( limit == size.width )
break;
for( ; j <= size.width - VecOp::SIZE - cn; j += VecOp::SIZE )
{
VT p0 = vop.load(row0+j-cn), p1 = vop.load(row0+j), p2 = vop.load(row0+j+cn);
VT p3 = vop.load(row1+j-cn), p4 = vop.load(row1+j), p5 = vop.load(row1+j+cn);
VT p6 = vop.load(row2+j-cn), p7 = vop.load(row2+j), p8 = vop.load(row2+j+cn);
vop(p1, p2); vop(p4, p5); vop(p7, p8); vop(p0, p1);
vop(p3, p4); vop(p6, p7); vop(p1, p2); vop(p4, p5);
vop(p7, p8); vop(p0, p3); vop(p5, p8); vop(p4, p7);
vop(p3, p6); vop(p1, p4); vop(p2, p5); vop(p4, p7);
vop(p4, p2); vop(p6, p4); vop(p4, p2);
vop.store(dst+j, p4);
}
limit = size.width;
}
}
}
else if( m ==
5 )
{
if( size.width ==
1 || size.height ==
1 )
{
int len = size.width + size.height -
1;
int sdelta = size.height ==
1 ? cn : sstep;
int sdelta0 = size.height ==
1 ?
0 : sstep - cn;
int ddelta = size.height ==
1 ? cn : dstep;
for( i =
0; i < len; i++, src += sdelta0, dst += ddelta )
for( j =
0; j < cn; j++, src++ )
{
int i1 = i >
0 ? -sdelta :
0;
int i0 = i >
1 ? -sdelta*
2 : i1;
int i3 = i < len-
1 ? sdelta :
0;
int i4 = i < len-
2 ? sdelta*
2 : i3;
WT p0 = src[i0], p1 = src[i1], p2 = src[
0], p3 = src[i3], p4 = src[i4];
op(p0, p1); op(p3, p4); op(p2, p3); op(p3, p4); op(p0, p2);
op(p2, p4); op(p1, p3); op(p1, p2);
dst[j] = (T)p2;
}
return;
}
size.width *= cn;
for( i =
0; i < size.height; i++, dst += dstep )
{
const T* row[
5];
row[
0] = src +
std::max(i -
2,
0)*sstep;
row[
1] = src +
std::max(i -
1,
0)*sstep;
row[
2] = src + i*sstep;
row[
3] = src +
std::min(i +
1, size.height-
1)*sstep;
row[
4] = src +
std::min(i +
2, size.height-
1)*sstep;
int limit = useSIMD ? cn*
2 : size.width;
for(j =
0;; )
{
for( ; j < limit; j++ )
{
WT p[
25];
int j1 = j >= cn ? j - cn : j;
int j0 = j >= cn*
2 ? j - cn*
2 : j1;
int j3 = j < size.width - cn ? j + cn : j;
int j4 = j < size.width - cn*
2 ? j + cn*
2 : j3;
for( k =
0; k <
5; k++ )
{
const T* rowk = row[k];
p[k*
5] = rowk[j0]; p[k*
5+
1] = rowk[j1];
p[k*
5+
2] = rowk[j]; p[k*
5+
3] = rowk[j3];
p[k*
5+
4] = rowk[j4];
}
op(p[
1], p[
2]); op(p[
0], p[
1]); op(p[
1], p[
2]); op(p[
4], p[
5]); op(p[
3], p[
4]);
op(p[
4], p[
5]); op(p[
0], p[
3]); op(p[
2], p[
5]); op(p[
2], p[
3]); op(p[
1], p[
4]);
op(p[
1], p[
2]); op(p[
3], p[
4]); op(p[
7], p[
8]); op(p[
6], p[
7]); op(p[
7], p[
8]);
op(p[
10], p[
11]); op(p[
9], p[
10]); op(p[
10], p[
11]); op(p[
6], p[
9]); op(p[
8], p[
11]);
op(p[
8], p[
9]); op(p[
7], p[
10]); op(p[
7], p[
8]); op(p[
9], p[
10]); op(p[
0], p[
6]);
op(p[
4], p[
10]); op(p[
4], p[
6]); op(p[
2], p[
8]); op(p[
2], p[
4]); op(p[
6], p[
8]);
op(p[
1], p[
7]); op(p[
5], p[
11]); op(p[
5], p[
7]); op(p[
3], p[
9]); op(p[
3], p[
5]);
op(p[
7], p[
9]); op(p[
1], p[
2]); op(p[
3], p[
4]); op(p[
5], p[
6]); op(p[
7], p[
8]);
op(p[
9], p[
10]); op(p[
13], p[
14]); op(p[
12], p[
13]); op(p[
13], p[
14]); op(p[
16], p[
17]);
op(p[
15], p[
16]); op(p[
16], p[
17]); op(p[
12], p[
15]); op(p[
14], p[
17]); op(p[
14], p[
15]);
op(p[
13], p[
16]); op(p[
13], p[
14]); op(p[
15], p[
16]); op(p[
19], p[
20]); op(p[
18], p[
19]);
op(p[
19], p[
20]); op(p[
21], p[
22]); op(p[
23], p[
24]); op(p[
21], p[
23]); op(p[
22], p[
24]);
op(p[
22], p[
23]); op(p[
18], p[
21]); op(p[
20], p[
23]); op(p[
20], p[
21]); op(p[
19], p[
22]);
op(p[
22], p[
24]); op(p[
19], p[
20]); op(p[
21], p[
22]); op(p[
23], p[
24]); op(p[
12], p[
18]);
op(p[
16], p[
22]); op(p[
16], p[
18]); op(p[
14], p[
20]); op(p[
20], p[
24]); op(p[
14], p[
16]);
op(p[
18], p[
20]); op(p[
22], p[
24]); op(p[
13], p[
19]); op(p[
17], p[
23]); op(p[
17], p[
19]);
op(p[
15], p[
21]); op(p[
15], p[
17]); op(p[
19], p[
21]); op(p[
13], p[
14]); op(p[
15], p[
16]);
op(p[
17], p[
18]); op(p[
19], p[
20]); op(p[
21], p[
22]); op(p[
23], p[
24]); op(p[
0], p[
12]);
op(p[
8], p[
20]); op(p[
8], p[
12]); op(p[
4], p[
16]); op(p[
16], p[
24]); op(p[
12], p[
16]);
op(p[
2], p[
14]); op(p[
10], p[
22]); op(p[
10], p[
14]); op(p[
6], p[
18]); op(p[
6], p[
10]);
op(p[
10], p[
12]); op(p[
1], p[
13]); op(p[
9], p[
21]); op(p[
9], p[
13]); op(p[
5], p[
17]);
op(p[
13], p[
17]); op(p[
3], p[
15]); op(p[
11], p[
23]); op(p[
11], p[
15]); op(p[
7], p[
19]);
op(p[
7], p[
11]); op(p[
11], p[
13]); op(p[
11], p[
12]);
dst[j] = (T)p[
12];
}
if( limit == size.width )
break;
for( ; j <= size.width - VecOp::SIZE - cn*
2; j += VecOp::SIZE )
{
VT p[
25];
for( k =
0; k <
5; k++ )
{
const T* rowk = row[k];
p[k*
5] = vop.load(rowk+j-cn*
2); p[k*
5+
1] = vop.load(rowk+j-cn);
p[k*
5+
2] = vop.load(rowk+j); p[k*
5+
3] = vop.load(rowk+j+cn);
p[k*
5+
4] = vop.load(rowk+j+cn*
2);
}
vop(p[
1], p[
2]); vop(p[
0], p[
1]); vop(p[
1], p[
2]); vop(p[
4], p[
5]); vop(p[
3], p[
4]);
vop(p[
4], p[
5]); vop(p[
0], p[
3]); vop(p[
2], p[
5]); vop(p[
2], p[
3]); vop(p[
1], p[
4]);
vop(p[
1], p[
2]); vop(p[
3], p[
4]); vop(p[
7], p[
8]); vop(p[
6], p[
7]); vop(p[
7], p[
8]);
vop(p[
10], p[
11]); vop(p[
9], p[
10]); vop(p[
10], p[
11]); vop(p[
6], p[
9]); vop(p[
8], p[
11]);
vop(p[
8], p[
9]); vop(p[
7], p[
10]); vop(p[
7], p[
8]); vop(p[
9], p[
10]); vop(p[
0], p[
6]);
vop(p[
4], p[
10]); vop(p[
4], p[
6]); vop(p[
2], p[
8]); vop(p[
2], p[
4]); vop(p[
6], p[
8]);
vop(p[
1], p[
7]); vop(p[
5], p[
11]); vop(p[
5], p[
7]); vop(p[
3], p[
9]); vop(p[
3], p[
5]);
vop(p[
7], p[
9]); vop(p[
1], p[
2]); vop(p[
3], p[
4]); vop(p[
5], p[
6]); vop(p[
7], p[
8]);
vop(p[
9], p[
10]); vop(p[
13], p[
14]); vop(p[
12], p[
13]); vop(p[
13], p[
14]); vop(p[
16], p[
17]);
vop(p[
15], p[
16]); vop(p[
16], p[
17]); vop(p[
12], p[
15]); vop(p[
14], p[
17]); vop(p[
14], p[
15]);
vop(p[
13], p[
16]); vop(p[
13], p[
14]); vop(p[
15], p[
16]); vop(p[
19], p[
20]); vop(p[
18], p[
19]);
vop(p[
19], p[
20]); vop(p[
21], p[
22]); vop(p[
23], p[
24]); vop(p[
21], p[
23]); vop(p[
22], p[
24]);
vop(p[
22], p[
23]); vop(p[
18], p[
21]); vop(p[
20], p[
23]); vop(p[
20], p[
21]); vop(p[
19], p[
22]);
vop(p[
22], p[
24]); vop(p[
19], p[
20]); vop(p[
21], p[
22]); vop(p[
23], p[
24]); vop(p[
12], p[
18]);
vop(p[
16], p[
22]); vop(p[
16], p[
18]); vop(p[
14], p[
20]); vop(p[
20], p[
24]); vop(p[
14], p[
16]);
vop(p[
18], p[
20]); vop(p[
22], p[
24]); vop(p[
13], p[
19]); vop(p[
17], p[
23]); vop(p[
17], p[
19]);
vop(p[
15], p[
21]); vop(p[
15], p[
17]); vop(p[
19], p[
21]); vop(p[
13], p[
14]); vop(p[
15], p[
16]);
vop(p[
17], p[
18]); vop(p[
19], p[
20]); vop(p[
21], p[
22]); vop(p[
23], p[
24]); vop(p[
0], p[
12]);
vop(p[
8], p[
20]); vop(p[
8], p[
12]); vop(p[
4], p[
16]); vop(p[
16], p[
24]); vop(p[
12], p[
16]);
vop(p[
2], p[
14]); vop(p[
10], p[
22]); vop(p[
10], p[
14]); vop(p[
6], p[
18]); vop(p[
6], p[
10]);
vop(p[
10], p[
12]); vop(p[
1], p[
13]); vop(p[
9], p[
21]); vop(p[
9], p[
13]); vop(p[
5], p[
17]);
vop(p[
13], p[
17]); vop(p[
3], p[
15]); vop(p[
11], p[
23]); vop(p[
11], p[
15]); vop(p[
7], p[
19]);
vop(p[
7], p[
11]); vop(p[
11], p[
13]); vop(p[
11], p[
12]);
vop.store(dst+j, p[
12]);
}
limit = size.width;
}
}
}
}
void medianBlur(
const Mat& src0, Mat& dst,
int ksize )
{
if( ksize <=
1 )
{
src0.copyTo(dst);
return;
}
CV_Assert( ksize %
2 ==
1 );
Size size = src0.size();
int cn = src0.channels();
bool useSortNet = ksize ==
3 || (ksize ==
5
#if !CV_SSE2
&& src0.depth() > CV_8U
#endif
);
dst.create( src0.size(), src0.type() );
Mat src;
if( useSortNet )
{
if( dst.data != src0.data )
src = src0;
else
src0.copyTo(src);
}
else
cv::copyMakeBorder( src0, src,
0,
0, ksize/
2, ksize/
2, BORDER_REPLICATE );
if( useSortNet )
{
if( src.depth() == CV_8U )
medianBlur_SortNet<MinMax8u, MinMaxVec8u>( src, dst, ksize );
else if( src.depth() == CV_16U )
medianBlur_SortNet<MinMax16u, MinMaxVec16u>( src, dst, ksize );
else if( src.depth() == CV_16S )
medianBlur_SortNet<MinMax16s, MinMaxVec16s>( src, dst, ksize );
else if( src.depth() == CV_32F )
medianBlur_SortNet<MinMax32f, MinMaxVec32f>( src, dst, ksize );
else
CV_Error(CV_StsUnsupportedFormat,
"");
return;
}
CV_Assert( src.depth() == CV_8U && (cn ==
1 || cn ==
3 || cn ==
4) );
double img_size_mp = (
double)(size.width*size.height)/(
1 <<
20);
if( ksize <=
3 + (img_size_mp <
1 ?
12 : img_size_mp <
4 ?
6 :
2)*(MEDIAN_HAVE_SIMD && checkHardwareSupport(CV_CPU_SSE2) ?
1 :
3))
medianBlur_8u_Om( src, dst, ksize );
else
medianBlur_8u_O1( src, dst, ksize );
}
static void
bilateralFilter_8u(
const Mat& src, Mat& dst,
int d,
double sigma_color,
double sigma_space,
int borderType )
{
double gauss_color_coeff = -
0.5/(sigma_color*sigma_color);
double gauss_space_coeff = -
0.5/(sigma_space*sigma_space);
int cn = src.channels();
int i, j, k, maxk, radius;
Size size = src.size();
CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) &&
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
if( sigma_color <=
0 )
sigma_color =
1;
if( sigma_space <=
0 )
sigma_space =
1;
if( d <=
0 )
radius = cvRound(sigma_space*
1.5);
else
radius = d/
2;
radius = MAX(radius,
1);
d = radius*
2 +
1;
Mat temp;
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
vector<float> _color_weight(cn*
256);
vector<float> _space_weight(d*d);
vector<int> _space_ofs(d*d);
float* color_weight = &_color_weight[
0];
float* space_weight = &_space_weight[
0];
int* space_ofs = &_space_ofs[
0];
for( i =
0; i <
256*cn; i++ )
color_weight[i] = (
float)
std::
exp(i*i*gauss_color_coeff);
for( i = -radius, maxk =
0; i <= radius; i++ )
for( j = -radius; j <= radius; j++ )
{
double r =
std::
sqrt((
double)i*i + (
double)j*j);
if( r > radius )
continue;
space_weight[maxk] = (
float)
std::
exp(r*r*gauss_space_coeff);
space_ofs[maxk++] = (
int)(i*temp.step + j*cn);
}
for( i =
0; i < size.height; i++ )
{
const uchar* sptr = temp.data + (i+radius)*temp.step + radius*cn;
uchar* dptr = dst.data + i*dst.step;
if( cn ==
1 )
{
for( j =
0; j < size.width; j++ )
{
float sum =
0, wsum =
0;
int val0 = sptr[j];
for( k =
0; k < maxk; k++ )
{
int val = sptr[j + space_ofs[k]];
float w = space_weight[k]*color_weight[
std::
abs(val - val0)];
sum += val*w;
wsum += w;
}
dptr[j] = (uchar)cvRound(sum/wsum);
}
}
else
{
assert( cn ==
3 );
for( j =
0; j < size.width*
3; j +=
3 )
{
float sum_b =
0, sum_g =
0, sum_r =
0, wsum =
0;
int b0 = sptr[j], g0 = sptr[j+
1], r0 = sptr[j+
2];
for( k =
0; k < maxk; k++ )
{
const uchar* sptr_k = sptr + j + space_ofs[k];
int b = sptr_k[
0], g = sptr_k[
1], r = sptr_k[
2];
float w = space_weight[k]*color_weight[
std::
abs(b - b0) +
std::
abs(g - g0) +
std::
abs(r - r0)];
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
}
wsum =
1.f/wsum;
b0 = cvRound(sum_b*wsum);
g0 = cvRound(sum_g*wsum);
r0 = cvRound(sum_r*wsum);
dptr[j] = (uchar)b0; dptr[j+
1] = (uchar)g0; dptr[j+
2] = (uchar)r0;
}
}
}
}
static void
bilateralFilter_32f(
const Mat& src, Mat& dst,
int d,
double sigma_color,
double sigma_space,
int borderType )
{
double gauss_color_coeff = -
0.5/(sigma_color*sigma_color);
double gauss_space_coeff = -
0.5/(sigma_space*sigma_space);
int cn = src.channels();
int i, j, k, maxk, radius;
double minValSrc=-
1, maxValSrc=
1;
const int kExpNumBinsPerChannel =
1 <<
12;
int kExpNumBins =
0;
float lastExpVal =
1.f;
float len, scale_index;
Size size = src.size();
CV_Assert( (src.type() == CV_32FC1 || src.type() == CV_32FC3) &&
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
if( sigma_color <=
0 )
sigma_color =
1;
if( sigma_space <=
0 )
sigma_space =
1;
if( d <=
0 )
radius = cvRound(sigma_space*
1.5);
else
radius = d/
2;
radius = MAX(radius,
1);
d = radius*
2 +
1;
minMaxLoc( src.reshape(
1), &minValSrc, &maxValSrc );
Mat temp;
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
vector<float> _space_weight(d*d);
vector<int> _space_ofs(d*d);
float* space_weight = &_space_weight[
0];
int* space_ofs = &_space_ofs[
0];
len = (
float)(maxValSrc - minValSrc) * cn;
kExpNumBins = kExpNumBinsPerChannel * cn;
vector<float> _expLUT(kExpNumBins+
2);
float* expLUT = &_expLUT[
0];
scale_index = kExpNumBins/len;
for( i =
0; i < kExpNumBins+
2; i++ )
{
if( lastExpVal >
0.f )
{
double val = i / scale_index;
expLUT[i] = (
float)
std::
exp(val * val * gauss_color_coeff);
lastExpVal = expLUT[i];
}
else
expLUT[i] =
0.f;
}
for( i = -radius, maxk =
0; i <= radius; i++ )
for( j = -radius; j <= radius; j++ )
{
double r =
std::
sqrt((
double)i*i + (
double)j*j);
if( r > radius )
continue;
space_weight[maxk] = (
float)
std::
exp(r*r*gauss_space_coeff);
space_ofs[maxk++] = (
int)(i*(temp.step/
sizeof(
float)) + j*cn);
}
for( i =
0; i < size.height; i++ )
{
const float* sptr = (
const float*)(temp.data + (i+radius)*temp.step) + radius*cn;
float* dptr = (
float*)(dst.data + i*dst.step);
if( cn ==
1 )
{
for( j =
0; j < size.width; j++ )
{
float sum =
0, wsum =
0;
float val0 = sptr[j];
for( k =
0; k < maxk; k++ )
{
float val = sptr[j + space_ofs[k]];
float alpha = (
float)(
std::
abs(val - val0)*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+
1] - expLUT[idx]));
sum += val*w;
wsum += w;
}
dptr[j] = (
float)(sum/wsum);
}
}
else
{
assert( cn ==
3 );
for( j =
0; j < size.width*
3; j +=
3 )
{
float sum_b =
0, sum_g =
0, sum_r =
0, wsum =
0;
float b0 = sptr[j], g0 = sptr[j+
1], r0 = sptr[j+
2];
for( k =
0; k < maxk; k++ )
{
const float* sptr_k = sptr + j + space_ofs[k];
float b = sptr_k[
0], g = sptr_k[
1], r = sptr_k[
2];
float alpha = (
float)((
std::
abs(b - b0) +
std::
abs(g - g0) +
std::
abs(r - r0))*scale_index);
int idx = cvFloor(alpha);
alpha -= idx;
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+
1] - expLUT[idx]));
sum_b += b*w; sum_g += g*w; sum_r += r*w;
wsum += w;
}
wsum =
1.f/wsum;
b0 = sum_b*wsum;
g0 = sum_g*wsum;
r0 = sum_r*wsum;
dptr[j] = b0; dptr[j+
1] = g0; dptr[j+
2] = r0;
}
}
}
}
void bilateralFilter(
const Mat& src, Mat& dst,
int d,
double sigmaColor,
double sigmaSpace,
int borderType )
{
dst.create( src.size(), src.type() );
if( src.depth() == CV_8U )
bilateralFilter_8u( src, dst, d, sigmaColor, sigmaSpace, borderType );
else if( src.depth() == CV_32F )
bilateralFilter_32f( src, dst, d, sigmaColor, sigmaSpace, borderType );
else
CV_Error( CV_StsUnsupportedFormat,
"Bilateral filtering is only implemented for 8u and 32f images" );
}
}
CV_IMPL
void
cvSmooth(
const void* srcarr,
void* dstarr,
int smooth_type,
int param1,
int param2,
double param3,
double param4 )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0;
CV_Assert( dst.size() == src.size() &&
(smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) );
if( param2 <=
0 )
param2 = param1;
if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE )
cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-
1,-
1),
smooth_type == CV_BLUR, cv::BORDER_REPLICATE );
else if( smooth_type == CV_GAUSSIAN )
cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE );
else if( smooth_type == CV_MEDIAN )
cv::medianBlur( src, dst, param1 );
else
cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE );
if( dst.data != dst0.data )
CV_Error( CV_StsUnmatchedFormats,
"The destination image does not have the proper type" );
}