题目链接:点击打开链接
1058 - Parallelogram Counting PDF (English)StatisticsForum Time Limit: 2 second(s)Memory Limit: 32 MBThere are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.
Input starts with an integer T (≤ 15), denoting the number of test cases.
The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than1000000000.
For each case, print the case number and the number of parallelograms that can be formed.
2
6
0 0
2 0
4 0
1 1
3 1
5 1
7
-2 -1
8 9
5 7
1 1
4 8
2 0
9 8
Case 1: 5
Case 2: 6
学了这么多年数学,然而只知道平行四边形对角线交于一点,却没想到只要存在两点的中点与另两点的中点相同,就能构成平行四边形,我个ZZ #include<cstdio> #include<algorithm> #include<cstring> using namespace std; const int MAX=1e6+10; int n; struct node { double x,y; }; node point1[MAX]; node point2[MAX]; // point2 的容量远比 point1 大得多 bool judge(int a,int b) { if(point2[a].x==point2[b].x&&point2[a].y==point2[b].y) return 1; return 0; } bool cmp(node a,node b) { if(a.x!=b.x) return a.x<b.x; return a.y<b.y; } int main() { int t,text=0; scanf("%d",&t); while(t--) { scanf("%d",&n); for(int i=0;i<n;i++) scanf("%lf %lf",&point1[i].x,&point1[i].y); int k=0; for(int i=0;i<n;i++) { for(int j=i+1;j<n;j++) { point2[k].x=(point1[i].x+point1[j].x)/2; point2[k++].y=(point1[i].y+point1[j].y)/2; } } /* 不能这样干,这样干是超时的, int cnt=0; for(int i=0;i<k;i++) { for(int j=i+1;j<k;j++) { if(judge(i,j)) cnt++; } } printf("Case %d: %d\n",++text,cnt);*/ int cnt=1,ans=0; sort(point2,point2+k,cmp); // 排序是为了方便下面比较 for(int i=1;i<k;i++) { if(judge(i,i-1)) { cnt++; } else { ans+=(cnt-1)*cnt/2; // 计算就是组合数:从 n个数里面取出 2个数 ,就是 C(n,2) cnt=1; // 一定要初始化的 } } if(cnt>1) ans+=(cnt-1)*cnt/2; // 判断循环的最后一组数据,如果也存在相同的点,就加上 printf("Case %d: %d\n",++text,ans); } return 0; }