HDU 5834 Magic boy Bi Luo with his excited tree

    xiaoxiao2025-05-27  7

    Problem Description Bi Luo is a magic boy, he also has a migic tree, the tree has  N  nodes , in each node , there is a treasure, it's value is  V[i] , and for each edge, there is a cost  C[i] , which means every time you pass the edge  i  , you need to pay  C[i] . You may attention that every  V[i]  can be taken only once, but for some  C[i]  , you may cost severial times. Now, Bi Luo define  ans[i]  as the most value can Bi Luo gets if Bi Luo starts at node  i . Bi Luo is also an excited boy, now he wants to know every  ans[i] , can you help him?   Input First line is a positive integer  T(T104)  , represents there are  T  test cases. Four each test: The first line contain an integer  N (N105) . The next line contains  N  integers  V[i] , which means the treasure’s value of node  i(1V[i]104) . For the next  N1  lines, each contains three integers  u,v,c  , which means node  u  and node  v  are connected by an edge, it's cost is  c(1c104) . You can assume that the sum of  N  will not exceed  106 .   Output For the i-th test case , first output Case #i: in a single line , then output  N  lines , for the i-th line , output  ans[i]  in a single line.   Sample Input 1 5 4 1 7 7 7 1 2 6 1 3 1 2 4 8 3 5 2   Sample Output Case #1: 15 10 14 9 15 一道颇为恶心的树形dp,要考虑的细节挺多的,想了好久死了一堆脑细胞。 首先,理解题意以后,我们可以知道,如果要计算从某一个点出发的最优值,可以进行一次dfs 以1作为根节点为例,图中我们可以先走1-2在回来2-1在去1-3再到3-5,这样可以得到1 2 3 5四个点的价值减去中间经过的边 可以看出一点,从1出发经过很多的分支,最后一条分支是不需要再回来的。 所以进行树形dp,需要记录三个值,从这个节点向下每次都回来的最优值g[x], 从这个节点向下最后一次不会来的最优值和次优值dp[x][0]和dp[x][1],顺便记录不会来的是哪一条边f 这样,第一次以1为根的dp可以求出dp[1][0]为1节点的答案,接下来通过这个推导下面相邻节点的答案。 对于x的某个孩子来说,有两种情况, 一种是它向下走不回来,显然这在这在之前的dp中可以得到。 另一种是向上走,这就和x节点的最优值选了那条边有关,如果是选择当前边,那么加上之前的次优值, 不然就加上之前的最优值,当然要先和0比一下,因为可能不走过去。 这样就能推出全部的答案了。 #include<set> #include<map> #include<ctime> #include<cmath> #include<stack> #include<queue> #include<bitset> #include<cstdio> #include<string> #include<cstring> #include<iostream> #include<algorithm> #include<functional> #define rep(i,j,k) for (int i = j; i <= k; i++) #define per(i,j,k) for (int i = j; i >= k; i--) #define lson x << 1, l, mid #define rson x << 1 | 1, mid + 1, r #define fi first #define se second #define mp(i,j) make_pair(i,j) #define pii pair<int,int> using namespace std; typedef long long LL; const int low(int x) { return x&-x; } const double eps = 1e-8; const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int N = 2e5 + 10; const int read() { char ch = getchar(); while (ch<'0' || ch>'9') ch = getchar(); int x = ch - '0'; while ((ch = getchar()) >= '0'&&ch <= '9') x = x * 10 + ch - '0'; return x; } int T, n, a[N]; int x, y, z, cas = 0; int ft[N], nt[N], v[N], u[N], sz; int g[N], dp[N][2], ans[N][3], f[N][3]; void dfs(int x, int fa) { f[x][0] = f[x][1] = -1; g[x] = a[x]; for (int i = ft[x]; i != -1; i = nt[i]) { if (u[i] == fa) continue; dfs(u[i], x); g[x] += max(g[u[i]] - 2 * v[i], 0); } for (int i = ft[x]; i != -1; i = nt[i]) { if (u[i] == fa || dp[u[i]][0] <= v[i]) continue; int now = g[x] - max(g[u[i]] - 2 * v[i], 0) + max(dp[u[i]][0] - v[i], 0); if (f[x][0] == -1) f[x][0] = i, dp[x][0] = now; else if (f[x][1] == -1 || dp[x][1] < now) { f[x][1] = i; dp[x][1] = now; if (dp[x][0] < dp[x][1]) swap(dp[x][0], dp[x][1]), swap(f[x][0], f[x][1]); } } if (f[x][1] == -1) dp[x][1] = g[x]; if (f[x][0] == -1) dp[x][0] = g[x]; } void get(int x, int fa) { for (int i = ft[x]; i != -1; i = nt[i]) { if (u[i] == fa) continue; int y = u[i]; ans[y][0] = dp[y][0] + max(g[x] - max(g[y] - 2 * v[i], 0) - 2 * v[i], 0); ans[y][1] = dp[y][1] + max(g[x] - max(g[y] - 2 * v[i], 0) - 2 * v[i], 0); f[y][2] = i; if (g[y] >= 2 * v[i]) { if (f[x][0] != i) ans[y][2] = ans[x][0] + v[i]; else ans[y][2] = ans[x][1] + v[i]; } else { if (f[x][0] != i) ans[y][2] = g[y] - v[i] + ans[x][0]; else ans[y][2] = ans[x][1] + g[y] - v[i]; } if (ans[y][1] <= ans[y][2]) swap(ans[y][1], ans[y][2]), swap(f[y][1], f[y][2]); if (ans[y][0] <= ans[y][1]) swap(ans[y][0], ans[y][1]), swap(f[y][0], f[y][1]); g[y] += max(g[x] - max(g[y] - 2 * v[i], 0) - 2 * v[i], 0); get(u[i], x); } } int main() { scanf("%d", &T); while (T--) { n = read(); sz = 0; rep(i, 1, n) a[i] = read(), ft[i] = -1; rep(i, 1, n - 1) { scanf("%d%d%d", &x, &y, &z); u[sz] = y; nt[sz] = ft[x]; v[sz] = z; ft[x] = sz++; u[sz] = x; nt[sz] = ft[y]; v[sz] = z; ft[y] = sz++; } dfs(1, 0); ans[1][1] = dp[1][1]; ans[1][0] = dp[1][0]; get(1, 0); printf("Case #%d:\n", ++cas); rep(i, 1, n) printf("%d\n", ans[i][0]); } return 0; }
    转载请注明原文地址: https://ju.6miu.com/read-1299326.html
    最新回复(0)