Problem Description
Lweb has a string
S
.
Oneday, he decided to transform this string to a new sequence.
You need help him determine this transformation to get a sequence which has the longest LIS(Strictly Increasing).
You need transform every letter in this string to a new number.
A
is the set of letters of
S
,
B
is the set of natural numbers.
Every injection
f:A→B
can be treat as an legal transformation.
For example, a String “aabc”,
A={a,b,c}
, and you can transform it to “1 1 2 3”, and the LIS of the new sequence is 3.
Now help Lweb, find the longest LIS which you can obtain from
S
.
LIS: Longest Increasing Subsequence. (https://en.wikipedia.org/wiki/Longest_increasing_subsequence)
Input
The first line of the input contains the only integer
T,(1≤T≤20)
.
Then
T
lines follow, the i-th line contains a string
S
only containing the lowercase letters, the length of
S
will not exceed
105
.
Output
For each test case, output a single line "Case #x: y", where x is the case number, starting from 1. And y is the answer.
Sample Input
2
aabcc
acdeaa
Sample Output
Case #1: 3
Case #2: 4
直接统计不同字母数量即可。。
我还特意写了个LIS
#include<map>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int a[1000001];
int line[1000001];
int l[1000001];
int find(int ll,int rr,int x)
{
int mid;
do
{
mid=(ll+rr)/2;
if(x>line[mid]&&x<line[mid+1])
return mid;
else if(x>=line[mid])
ll=mid+1;
else
rr=mid-1;
}
while(ll<=rr);
return 0;
}
int v[40];
int main()
{
int T;
scanf("%d",&T);
int n,k=0;
while(T>0)
{
T--;
k++;
string x;
cin>>x;
int n=x.size();
int i;
memset(v,0,sizeof(v));
int d=0;
for(i=0;i<n;i++)
{
int xx=x[i]-'a';
if(!v[xx])
{
d++;
v[xx]=d;
a[i+1]=d;
}
else
a[i+1]=v[xx];
}
int len=1;
line[len]=a[1];
int j;
for(i=2;i<=n;i++)
{
if(a[i]>line[len])
j=++len;
else
j=find(1,len,a[i])+1;
line[j]=a[i];
// printf("%d %d %d\n",line[1],line[2],line[3]);
}
printf("Case #%d: ",k);
printf("%d\n",len);
}
}
转载请注明原文地址: https://ju.6miu.com/read-1300154.html