听说是白书原题。
直接按照质因子列异或方程组高斯消元即可
ans=2^自由元个数-1
#include<map> #include<cmath> #include<queue> #include<vector> #include<cstdio> #include<string> #include<cstring> #include<iostream> #include<algorithm> using namespace std; long long mod=1000000007; int prime[2001]; bool check[2001]; int tot; inline void prepare() { memset(check,false,sizeof(check)); int i,j; for(i=2;i<=2000;i++) { if(!check[i]) { tot++; prime[tot]=i; } for(j=1;j<=tot;j++) { if(i*prime[j]>2000) break; check[i*prime[j]]=true; } } } int a[400][400],x[400],free_x[400]; int equ,var,free_num; long long b[301]; int Gauss() { int max_r,col,k; free_num=0; for(k=0,col=0;k<equ&&col<var;k++,col++) { max_r=k; for(int i=k+1;i<equ;i++) { if(abs(a[i][col])>abs(a[max_r][col])) max_r=i; } if(a[max_r][col]==0) { k--; free_x[free_num++]=col; continue; } if(max_r!=k) { for(int j=col;j<var+1;j++) swap(a[k][j],a[max_r][j]); } for(int i=k+1;i<equ;i++) { if(a[i][col]!=0) { for(int j=col;j<var+1;j++) a[i][j]^=a[k][j]; } } } for(int i=k;i<equ;i++) if(a[i][col]!=0) return -1; return var-k; } int main() { prepare(); int T,k=0; scanf("%d",&T); while(T>0) { T--; k++; int n; scanf("%d",&n); equ=tot; var=n; memset(a,0,sizeof(a)); memset(x,0,sizeof(x)); int i,j; for(i=1;i<=n;i++) scanf("%I64d",&b[i]); for(i=1;i<=n;i++) { long long t=b[i]; for(j=1;j<=tot;j++) { int sx=0; while(t%prime[j]==0) { t/=prime[j]; sx++; } if(sx%2==1) a[j-1][i-1]=1; } } int p=Gauss(); long long ans=1; for(i=1;i<=p;i++) ans=ans*(long long)2%mod; ans=(ans+mod-1)%mod; printf("Case #%d:\n%I64d\n",k,ans); } }