Light OJ:1058Parallelogram Counting(几何数学+技巧排序)

    xiaoxiao2025-06-21  12

    1058 - Parallelogram Counting    PDF (English)StatisticsForum Time Limit: 2 second(s)Memory Limit: 32 MB

    There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.

    Input

    Input starts with an integer T (≤ 15), denoting the number of test cases.

    The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.

    Output

    For each case, print the case number and the number of parallelograms that can be formed.

    Sample Input

    Output for Sample Input

    2

    6

    0 0

    2 0

    4 0

    1 1

    3 1

    5 1

    7

    -2 -1

    8 9

    5 7

    1 1

    4 8

    2 0

    9 8

    Case 1: 5

    Case 2: 6

     


    SPECIAL THANKS: JANE ALAM JAN (DESCRIPTION, SOLUTION, DATASET)

    题目大意:给你若干个点的坐标,问这些点随机组合之后,能得到多少个平行四边形。

    解题思路:按照斜率、向量的思路的话会重复或遗漏,这里想想,平行四边形两条对角线交点固定,即两两点中点值一样,那么就好办了,如果n对点中点值一样的话,那么从中任选两对,c(n,2),就能求出当前组合的平行四边形个数了。

    代码如下:

    #include <cstdio> #include <algorithm> using namespace std; struct node { int x,y; }dian[1010]; node mid[500010]; bool cmp(struct node a,struct node b)//排序 { if(a.x==b.x) { return a.y<b.y; } else { return a.x<b.x; } } int main() { int t; scanf("%d",&t); int k=1; while(t--) { int n; scanf("%d",&n); for(int i=0;i<n;i++) { scanf("%d%d",&dian[i].x,&dian[i].y); } int num=0; for(int i=0;i<n;i++)//两两点组合成对 { for(int j=i+1;j<n;j++) { mid[num].x=dian[i].x+dian[j].x; mid[num].y=dian[i].y+dian[j].y; num++; } } sort(mid,mid+num,cmp);//排下序,以为要计算n对中点相同的点的对数 int geshu=1; int ans=0; int flag=0;//作为区间的起点 for(int i=1;i<num;i++) { if(mid[i].x==mid[flag].x&&mid[i].y==mid[flag].y)//统计n为多少 { geshu++; } else { ans=ans+geshu*(geshu-1)/2; geshu=1;//再次初始化 flag=i;//更新flag } } printf("Case %d: %d\n",k++,ans); } return 0; }

    转载请注明原文地址: https://ju.6miu.com/read-1300189.html
    最新回复(0)