Colosseo
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 732 Accepted Submission(s): 147
Problem Description
Mr. Chopsticks keeps N monsters, numbered from 1 to N. In order to train them, he holds N * (N - 1) / 2 competitions and asks the monsters to fight with each other. Any two monsters fight in exactly one competition, in which one of them beat the other. If monster A beats monster B, we say A is stronger than B. Note that the “stronger than” relation is not transitive. For example, it is possible that A beats B, B beats C but C beats A.
After finishing all the competitions, Mr. Chopsticks divides all the monsters into two teams T1 and T2, containing M and N – M monsters respectively, where each monster is in exactly one team. Mr. Chopsticks considers a team of monsters powerful if there is a way to arrange them in a queue (A1, A2, …, Am) such that monster Ai is stronger than monster Aj for any 1<=i<j<=m. Now Mr. Chopsticks wants to check whether T1 and T2 are both powerful, and if so, he wants to select k monsters from T2 to join T1 such that the selected monsters together with all the monsters in T1 can still form a powerful team and k is as large as possible. Could you help him?
Input
The input contains multiple test cases. Each case begins with two integers N and M (2 <= N <= 1000, 1 <= M < N), indicating the number of monsters Mr. Chopsticks keeps and the number of monsters in T1 respectively. The following N lines, each contain N integers, where the jth integer in the ith line is 1 if the ith monster beats the jth monster; otherwise, it is 0. It is guaranteed that the ith integer in the jth line is 0 iff the jth integer in the ith line is 1. The ith integer in the ith line is always 0. The last line of each case contains M distinct integers, each between 1 and N inclusively, representing the monsters in T1. The input is terminated by N = M = 0.
Output
For each case, if both T1 and T2 are powerful, output “YES” and the maximum k; otherwise, output “NO”.
Sample Input
3 2
0 1 1
0 0 1
0 0 0
3 1
4 3
0 1 0 1
0 0 1 1
1 0 0 1
0 0 0 0
1 2 3
4 2
0 1 0 1
0 0 1 1
1 0 0 1
0 0 0 0
1 2
0 0
Sample Output
YES 1
NO
YES 1
Hint
In the third example, Mr. Chopsticks can let the monster numbered 4 from T2 join into T1 to form a queue (1, 2, 4).
Author
SYSU
Source
2016 Multi-University Training Contest 7
Recommend
wange2014 | We have carefully selected several similar problems for you:
5842
5841
5840
5839
5838
题目大意:
有V只怪兽,对于任意两只我们都知道哪只可以打败哪只(可能形成环)。给出一些怪兽,问给出的这些怪兽和剩下的怪兽组成的这两组是否没有环,此外,求最多可以从剩下的怪兽中拿多少只加入前面使其继续不成环。
解题思路:
根据题意,这些怪兽的关系形成了一个竞赛图。
竞赛图在百度上的定义如下(感觉描述很奇怪,但还是看得懂的)
每对顶点之间都有一条边相连的
有向图称为竞赛图。
[1]
设D为n阶有向
简单图,若D
[2]
中基图为n阶
无向完全图,则称D是n阶竞赛图。
每对顶点之间都有一条边相连的
有向图称为竞赛图。
[1]
设D为n阶有向
简单图,若D
[2]
中基图为n阶
无向完全图
,则称D是n阶竞赛图。
利用竞赛图的性质,这题就可以简化很多。
首先我们对选出的和剩下的怪兽进行拓普排序,如果有环不能拓普排序,那么直接输出"NO"。然后我们用O(n^2)的遍历,暴力查找第二组的每一个怪兽如果插入第一组插入的位置,如果不能插入跳过这个怪兽(由于竞赛图的性质,插入位置只能有一个)。然后我们求这个位置序列的LIS(这里可以相等,由于竞赛图的性质,这样插入不可能存在形成环的情况,至于证明自己画一下图就很明显了)。
出题人说这题不卡常,给了标程三倍的时间。然而这题非常恶心地卡读入(╯°Д°)╯︵ /(.□ . \)。我不用gets读入即使开挂也是TLE,用gets才200ms。。。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
#define INF 0x3f3f3f3f
const int maxv=1000+3;
int V,N,A[maxv],B[maxv],c[maxv],t,dp[maxv];
int G[maxv][maxv];
vector<int> pos;
//int pos[maxv];
bool a_have[maxv];
bool vis[maxv];
char in[maxv*2];
template<class T>//输入挂
inline bool scan_d(T &ret)
{
char c;
int sgn;
if(c=getchar(),c==EOF)
return 0;//EOF
while(c!='-'&&(c<'0'||c>'9'))
c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9')
ret=ret*10+(c-'0');
ret*=sgn;
return 1;
}
inline void out(int x)//输出挂
{
if(x>9)
out(x/10);
putchar(x%10+'0');
}
bool dfs(int u,bool flag,int *C)
{
//cout<<"in u: "<<u<<endl;
c[u]=-1;//访问标志
for(int v=0;v<V;++v)
if(a_have[v]==flag&&G[u][v])
if(c[v]<0)
return false;//存在有向环,失败退出
else if(!c[v]&&!dfs(v,flag,C))
return false;
//cout<<"out u: "<<u<<endl;
c[u]=1;
C[--t]=u;
return true;
}
bool toposort(bool flag,int n,int *C)
{
t=n;
memset(c,0,sizeof c);
for(int u=0;u<V;++u)
if(a_have[u]==flag&&!c[u])
if(!dfs(u,flag,C))
return false;
return true;
}
int main()
{
while(~scanf("%d%d",&V,&N)&&(V||N))
{
getchar();
for(int i=0;i<V;++i)
{
gets(in);//卡输入,必须用gets
for(int j=0;j<V;++j)
G[i][j]=in[j<<1]-'0';
}
memset(a_have,0,sizeof a_have);
for(int i=0;i<N;++i)
{
int temp;
scan_d(temp);
a_have[temp-1]=true;//标记哪些怪物被选出来
}
if(!toposort(true,N,A)||!toposort(false,V-N,B))//有环
{
puts("NO");
continue;
}
printf("YES ");
pos.clear();
for(int i=0;i<V-N;++i)
{
bool flag=true,ok=true;;
int p=N;
for(int j=N-1;j>=0;--j)
{
if(flag)
{
if(G[B[i]][A[j]])
p=j-1;
else flag=false;
}
else if(G[B[i]][A[j]])//形成环,跳过
{
ok=false;
break;
}
}
if(ok)
pos.push_back(p);//加入位置序列
}
size_t n=pos.size();
fill(dp,dp+n,INF);
for(int i=0;i<n;++i)//求LIS
*upper_bound(dp,dp+n,pos[i])=pos[i];
out(lower_bound(dp,dp+n,INF)-dp);
putchar('\n');
}
return 0;
}
转载请注明原文地址: https://ju.6miu.com/read-1301306.html