POJ 1149-PIGS(Ford-Fulkerson 标号法求网络最大流)

    xiaoxiao2025-10-17  2

    PIGS Time Limit: 1000MS Memory Limit: 10000KTotal Submissions: 20029 Accepted: 9178

    Description

    Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs.  All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.  More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.  An unlimited number of pigs can be placed in every pig-house.  Write a program that will find the maximum number of pigs that he can sell on that day.

    Input

    The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N.  The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.  The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):  A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

    Output

    The first and only line of the output should contain the number of sold pigs.

    Sample Input

    3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6

    Sample Output

    7

    Source

    Croatia OI 2002 Final Exam - First day

    题目意思:

    有M个猪圈,N个顾客,给出每个猪圈中猪的数目。 每个顾客有A把钥匙,对应A个猪圈的编号,每个顾客会买B头猪。 Mark木有猪圈的钥匙,每个顾客来的时候把他们有钥匙的猪圈全部打开;而且Mark可以重新分配被打开的猪圈里面的猪。 顾客离开后,猪圈再次被锁上。 求Mark能卖出的猪的最大值。

    解题思路:

    Ford-Fulkerson 标号法求网络最大流。 除了顾客的N个顶点外,自己增加源点和汇点这两个点。 每个顾客购买的数目是连接到汇点上的容量; 源点与每个猪圈的第一个顾客连边,边的容量是开始时猪圈中猪的数目; 若源点与某个结点之间有重边,将权合并(如上图中Vs~V1,4就是合并了1和3); 若顾客j紧跟i后面打开猪圈,那么<i,j>容量为正无穷(因为此时可以随意调整猪圈中的猪的数量)。 #include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <queue> #include <iomanip> #include <algorithm> #define maxn 1010 #define INF 0xfffffff using namespace std; struct ArcType { int c,f;//容量、流量 }; ArcType edge[maxn][maxn]; int n,m;//顶点数、弧数 int s,t; int flag[maxn];//顶点状态:-1——未标号;0——已标号未检查;1——已标号已检查 int prev[maxn];//标号的第一个分量:指明标号从哪个顶点而来,以便找出可改进量 int alpha[maxn];//标号的第二个分量:可改进量α int que[maxn];//相当于BFS中的队列 int v;//队列头元素 int qs,qe;//队首队尾的位置 int i,j; void ford()//标号法求网络最大流 { int flow[maxn][maxn];//节点之间的流量Fij int prev[maxn];//可改进路径上前一个节点的标号,相当于标号的第一个分量 int minflow[maxn];//每个顶点的可改进量α,相当于标号的第二个分量 int que[maxn]; int qs,qe;//队列首尾位置坐标 int v,p;//当前顶点、保存Cij-Fij for(i=0; i<maxn; ++i) for(j=0; j<maxn; ++j) flow[i][j]=0; minflow[0]=INF;//源点标号的第二分量为无穷大 while(1)//标号法 { for(i=0; i<maxn; ++i)//每次标号前,每个顶点重新回到未标号状态 prev[i]=-2; prev[0]=-1; qs=0; que[qs]=0;//源点入队 qe=1; while(qs<qe&&prev[t]==-2) { v=que[qs];//取队列头节点 ++qs; for(i=0; i<t+1; ++i)//prev[i]==-2表示顶点i未标号 if(prev[i]==-2&&(p=edge[v][i].c-flow[v][i]))//edge[v][i].c-flow[v][i]!=0能保证i是v邻接顶点且能进行标号 { prev[i]=v; que[qe]=i; ++qe; minflow[i]=(minflow[v]<p)?minflow[v]:p; } } if(prev[t]==-2) break;//汇点t无标号,标号法结束 for(i=prev[t],j=t; i!=-1; j=i,i=prev[i])//调整过程 { flow[i][j]+=minflow[t]; flow[j][i]=-flow[i][j]; } } for(i=0,p=0; i<t; ++i)//统计进入汇点的流量即最大流的流量 p+=flow[i][t]; cout<<p<<endl; } int main() { ios::sync_with_stdio(false); cin.tie(0); cin>>m>>n;//顶点个数、弧数 s=0,t=n+1;//源点和汇点 int pig[maxn],last[maxn];//每个猪圈中猪的数量、每个猪圈前一个顾客的序号 memset(last,0,sizeof(last)); for(i=1; i<=m; ++i) cin>>pig[i];//输入每个猪圈中猪的数量 for(i=1; i<=n; ++i) { int num; cin>>num;//拥有的猪圈钥匙数量 for(j=0; j<num; ++j) { int k; cin>>k;//钥匙编号 if(last[k]==0) edge[s][i].c+=pig[k]; else edge[last[k]][i].c=INF; last[k]=i; } cin>>edge[i][t].c; edge[i][t].f=0; } n+=2;//加上源点和汇点 ford(); return 0; } /* 3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6 */
    转载请注明原文地址: https://ju.6miu.com/read-1303264.html
    最新回复(0)