UVA 10200Prime Time(素数)

    xiaoxiao2025-10-20  8

    Euler is a well-known matematician, and, among many other things, he discovered that the formula n 2 + n + 41 produces a prime for 0 ≤ n < 40. For n = 40, the formula produces 1681, which is 41 ∗ 41. Even though this formula doesn’t always produce a prime, it still produces a lot of primes. It’s known that for n ≤ 10000000, there are 47,5% of primes produced by the formula! So, you’ll write a program that will output how many primes does the formula output for a certain interval. Input Each line of input will be given two positive integer a and b such that 0 ≤ a ≤ b ≤ 10000. You must read until the end of the file. Output For each pair a, b read, you must output the percentage of prime numbers produced by the formula in this interval (a ≤ n ≤ b) rounded to two decimal digits. Sample Input 0 39 0 40 39 40 Sample Output 100.00 97.56

    50.00

    题意:问a到b之间素数所占百分比。

    思路:直接打表会超时,10的八次方。对于a到b之间的数可以直接判断是否为素数,建立一个函数biao()来判断是否是素数,是返回1否则返回0,在建立一个数组记录该数是不是素数。然后找到ab之间的素数个数在计算即可。注意要确定精度,因为保存两位小数没有确立精度可能会出错。

    代码:

    #include<cstdio> #include<cstring> #include<math.h> using namespace std; #define MAXN 10010 long long su[MAXN]; long long biao(long long x) { long long i; for(i=2;i*i<=x;i++) { if(x%i==0) return 0; } return 1; } void qq() { long long i; for(i=0;i<=10010;i++) su[i]=biao(i*i+i+41); } int main() { long long a,b,i; memset(su,0,sizeof(su)); qq(); while(~scanf("%lld %lld",&a,&b)) { long long sum=b-a+1; long long ans=0; for(i=a;i<=b;i++) { if(su[i]) ans++; } double lv; lv=ans*100.0/sum; printf("%.2lf\n",lv); } return 0; }

    转载请注明原文地址: https://ju.6miu.com/read-1303357.html
    最新回复(0)