CountDownLatch、CyclicBarrier、Semaphore

    xiaoxiao2021-03-25  100

    CountDownLacth(倒计时闩):个人理解:使用同一个CountDownLacth的多个线程,可以使用CountDownLacth提供的await方法,实现阻塞等待,需要其他线程调用CountDownLacth提供的countDown方法来唤醒它,CountDownLacth有构造函数,如果传入2,那么

    就要两个其他线程调用countDown方法来唤醒它。

    场景:经常用于监听某些初始化操作,等初始化执行完毕后,通知主线程继续工作。

    public class UseCountDownLatch { public static void main(String[] args) { /**三个线程共用一个CountDownLatch **/ final CountDownLatch countDown = new CountDownLatch(2); Thread t1 = new Thread(new Runnable() { @Override public void run() { try { System.out.println("进入线程t1" + "等待其他线程处理完成..."); /** * 线程t1将进入等待,因为初始化传入参数2,所以要等待两个线程去唤醒他 */ countDown.await(); System.out.println("t1线程继续执行..."); } catch (InterruptedException e) { e.printStackTrace(); } } },"t1"); Thread t2 = new Thread(new Runnable() { @Override public void run() { try { System.out.println("t2线程进行初始化操作..."); Thread.sleep(3000); System.out.println("t2线程初始化完毕,通知t1线程继续..."); countDown.countDown(); } catch (InterruptedException e) { e.printStackTrace(); } } }); Thread t3 = new Thread(new Runnable() { @Override public void run() { try { System.out.println("t3线程进行初始化操作..."); Thread.sleep(4000); System.out.println("t3线程初始化完毕,通知t1线程继续..."); countDown.countDown(); } catch (InterruptedException e) { e.printStackTrace(); } } }); t1.start(); t2.start(); t3.start(); } } CyclicBarrier(环屏障): 个人理解:使用同一个CyclicBarrier的多个线程,可以使用CyclicBarrier提供的await方法,实现所有的 线程阻塞,直到所有线程都运行了await方法,才统一执行下面的代码。 类似场景: 每个线程代表一个跑步运动员,当运动员都准备好后,才一起出发,只要有一个人没有准备好,大家都等待。 public class UseCyclicBarrier { /** * 模拟运动员athlete */ static class Athlete implements Runnable { /**初始化传进来的**/ private CyclicBarrier barrier; private String name; public Athlete(CyclicBarrier barrier, String name) { this.barrier = barrier; this.name = name; } @Override public void run() { try { Thread.sleep(1000 * (new Random()).nextInt(5)); System.out.println(name + " 准备OK."); //共用barrier的线程都执行到这里,才能执行下面的代码 barrier.await(); } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e) { e.printStackTrace(); } System.out.println(name + " Go!!"); } } public static void main(String[] args) throws IOException, InterruptedException { CyclicBarrier barrier = new CyclicBarrier(3); // 3 ExecutorService executor = Executors.newFixedThreadPool(3); /** * 三个线程共工一个barrier */ executor.submit(new Thread(new Athlete(barrier, "zhangsan"))); executor.submit(new Thread(new Athlete(barrier, "lisi"))); executor.submit(new Thread(new Athlete(barrier, "wangwu"))); executor.shutdown(); } } Semaphore(信号量):

    可以控制系统的流量:拿到信号量的线程可以进入,否则就等待。通过acquire()和release()获取和释放访问许可

    public static void main(String[] args) { // 线程池 ExecutorService exec = Executors.newCachedThreadPool(); // 只能5个线程同时访问 final Semaphore semp = new Semaphore(5); // 模拟20个客户端访问 for (int index = 0; index < 20; index++) { final int NO = index; Runnable run = new Runnable() { public void run() { try { // 获取许可 semp.acquire(); System.out.println("Accessing: " + NO); //模拟实际业务逻辑 Thread.sleep((long) (Math.random() * 10000)); // 访问完后,释放 semp.release(); } catch (InterruptedException e) { } } }; exec.execute(run); } try { Thread.sleep(10); } catch (InterruptedException e) { e.printStackTrace(); } //System.out.println(semp.getQueueLength()); // 退出线程池 exec.shutdown(); }

    转载请注明原文地址: https://ju.6miu.com/read-13442.html

    最新回复(0)