Mission
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
Solution
裸的莫比乌斯反演。 把询问拆分成四个子询问,然后莫比乌斯反演要用分块求解。
Code
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<math.h>
#include<string.h>
#define ll long long
using namespace std;
const char* fin=
"ex2301.in";
const char* fout=
"ex2301.out";
const ll inf=
0x7fffffff;
const ll maxn=
50007;
ll t,a,b,c,d,ind,i,j,k;
ll miu[maxn],p[maxn];
bool bz[maxn];
ll ans;
ll f(ll n,ll m){
ll i,j,k,ans=
0;
if (n<=
0 || m<=
0)
return 0;
if (n>m) swap(n,m);
for (i=
1;ind*i<=n;){
j=min(n/(ind*(n/(ind*i))),m/(ind*m/(ind*i)));
ans+=(n/(ind*i))*(m/(ind*i))*(miu[j]-miu[i-
1]);
i=j+
1;
}
return ans;
}
int main(){
freopen(fin,
"r",stdin);
freopen(fout,
"w",stdout);
scanf(
"%lld",&t);
miu[
1]=
1;
for (i=
2;i<maxn;i++){
if (!bz[i]){
p[++p[
0]]=i;
miu[i]=-
1;
}
for (j=
1;j<=p[
0];j++){
k=i*p[j];
if (k>=maxn)
break;
bz[k]=
true;
if (i%p[j]==
0){
miu[k]=
0;
break;
}
else miu[k]=-miu[i];
}
}
for (i=
1;i<maxn;i++) miu[i]+=miu[i-
1];
while (t--){
scanf(
"%lld%lld%lld%lld%lld",&a,&b,&c,&d,&ind);
printf(
"%lld\n",f(b,d)-f(b,c-
1)-f(a-
1,d)+f(a-
1,c-
1));
}
return 0;
}
转载请注明原文地址: https://ju.6miu.com/read-13869.html