题目描述
传送门
题解
受到上一道题的影响,这题想了很久… 因为这题的思路和上题真的是相似又互异的 令
F(i)
表示把小串结尾怼到大串的第i个字符上是否能匹配,0表示能匹配,非0表示不能匹配 对于大串,
f(i)=s(i)
,对于小串,
g(i)=(s(i)=′?′)?0:s(i)
,也就是说,将通配符的权赋为0,其余的直接赋为自己的权值 那么计算将小串倒置了之后
F(i)
就可以写成卷积的形式,为避免正负数相消,我们将差取平方
F(i)=∑j=0t−1g(j)[f(i−j)−g(j)]2=∑j=0t−1f(i−j)2g(j)−2f(i−j)g(j)2+g(j)3
就相当于是算两个卷积然后对于每一个
F(i)
加一个常数 FFT
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define N 300005
const double pi=
acos(-
1.0);
int s,t,L,R[N],F[N],ans[N];
char S[N],T[N];
double f[N],g[N],z;
struct complex
{
double x,y;
complex(
double X=
0,
double Y=
0)
{
x=X,y=Y;
}
}a[N],b[N];
complex operator + (
complex a,
complex b) {
return complex(a.x+b.x,a.y+b.y);}
complex operator - (
complex a,
complex b) {
return complex(a.x-b.x,a.y-b.y);}
complex operator * (
complex a,
complex b) {
return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
void FFT(
complex a[N],
int n,
int opt)
{
for (
int i=
0;i<n;++i)
if (i<R[i]) swap(a[i],a[R[i]]);
for (
int k=
1;k<n;k<<=
1)
{
complex wn=
complex(
cos(pi/k),opt*
sin(pi/k));
for (
int i=
0;i<n;i+=(k<<
1))
{
complex w=
complex(
1,
0);
for (
int j=
0;j<k;++j,w=w*wn)
{
complex x=a[i+j],y=w*a[i+j+k];
a[i+j]=x+y,a[i+j+k]=x-y;
}
}
}
}
void calc(
int n,
int m,
int opt)
{
L=
0;
memset(R,
0,
sizeof(R));
m+=n;
for (n=
1;n<=m;n<<=
1) ++L;
for (
int i=
0;i<n;++i)
R[i]=(R[i>>
1]>>
1)|((i&
1)<<(L-
1));
FFT(a,n,
1);FFT(b,n,
1);
for (
int i=
0;i<=n;++i) a[i]=a[i]*b[i];
FFT(a,n,-
1);
for (
int i=
0;i<s;++i) F[i]+=opt*(
int)(a[i].x/n+
0.5);
}
int main()
{
scanf(
"%s",S);s=
strlen(S);
scanf(
"%s",T);t=
strlen(T);
for (
int i=
0;i<t/
2;++i) swap(T[i],T[t-i-
1]);
for (
int i=
0;i<s;++i) f[i]=(
double)(S[i]-
'a'+
1);
for (
int i=
0;i<t;++i) g[i]=(T[i]==
'?')?
0.0:(
double)(T[i]-
'a'+
1);
memset(a,
0,
sizeof(a));
memset(b,
0,
sizeof(b));
for (
int i=
0;i<s;++i) a[i]=
complex(f[i]*f[i],
0);
for (
int i=
0;i<t;++i) b[i]=
complex(g[i],
0);
calc(s-
1,t-
1,
1);
memset(a,
0,
sizeof(a));
memset(b,
0,
sizeof(b));
for (
int i=
0;i<s;++i) a[i]=
complex(
2.0*f[i],
0);
for (
int i=
0;i<t;++i) b[i]=
complex(g[i]*g[i],
0);
calc(s-
1,t-
1,-
1);
for (
int i=
0;i<t;++i) z+=g[i]*g[i]*g[i];
for (
int i=t-
1;i<s;++i)
{
F[i]+=(
int)z;
if (!F[i]) ans[++ans[
0]]=i-t+
1;
}
printf(
"%d\n",ans[
0]);
for (
int i=
1;i<=ans[
0];++i)
printf(
"%d\n",ans[i]);
}
总结
思路要灵活
转载请注明原文地址: https://ju.6miu.com/read-14758.html