Description
给出n个点m条边,求不重复地从1出发走到n点最多走多少次,最短走多长的路
Solution
对于第一问就是拆点的最大流。第二问显然不能单纯用最大流解决了,于是我们每条边引入一个费用的概念,表示单位流量的价格。
连边的时候反向弧的费用要为相反数,那么就是每次找增广路的时候同时找一条费用最小的。因为有负权边所以只能spfa实现
调了一下午我果然还是太弱啊
Code
#include <stdio.h>
#include <string.h>
#include <queue>
#define rep(i, st, ed) for (int i = st; i <= ed; i += 1)
#define erg(i, st) for (int i = ls[st]; i; i = e[i].next)
#define fill(x, t) memset(x, t, sizeof(x))
#define INF 0x3f3f3f3f
#define N 501
#define E 40001
struct edge{
int x, y, w, c, next;}e[E];
struct data{
int x, t;};
int rc[N][N], ls[N];
inline void addEdge(
int &cnt,
int x,
int y,
int w,
int c){
cnt +=
1; e[cnt] = (edge){x, y, w, c, ls[x]}; ls[x] = cnt;
cnt +=
1; e[cnt] = (edge){y, x,
0, -c, ls[y]}; ls[y] = cnt;
}
int inQueue[N], dis[N], pre[N], q[N];
inline int spfa(
int st,
int ed){
fill(dis,
63);
fill(inQueue,
0);
dis[st] =
0;
inQueue[st] =
1;
int head =
0, tail =
1;
q[tail] = st;
while (head != tail){
head +=
1;
if (head == N){
head =
1;
}
int now = q[head];
erg(i, now){
if (e[i].w >
0 && dis[now] + e[i].c < dis[e[i].y]){
dis[e[i].y] = dis[now] + e[i].c;
pre[e[i].y] = i;
if (!inQueue[e[i].y]){
tail +=
1;
if (tail == N){
tail =
1;
}
q[tail] = e[i].y;
inQueue[e[i].y] =
1;
}
}
}
inQueue[now] =
0;
}
return dis[ed] != INF;
}
inline int min(
int x,
int y){
return x<y?x:y;
}
int ans1 =
0, ans2 =
0;
inline void mcf(
int st,
int ed){
int mn = INF;
for (
int i = ed; pre[i]; i = e[pre[i]].x){
mn = min(mn, e[pre[i]].w);
}
for (
int i = ed; i; i = e[pre[i]].x){
e[pre[i]].w -= mn;
e[pre[i] ^
1].w += mn;
ans2 += mn * e[pre[i]].c;
}
ans1 +=
1;
}
int main(
void){
int n, m;
scanf(
"%d%d", &n, &m);
int st =
1, ed = n + n;
int edgeCnt =
1;
fill(ls,
0);
rep(i,
1, m){
int x, y, w;
scanf(
"%d%d%d", &x, &y, &w);
addEdge(edgeCnt, x + n, y,
1, w);
}
rep(i,
2, n -
1){
addEdge(edgeCnt, i, i + n,
1,
0);
}
addEdge(edgeCnt, st, st + n, INF,
0);
addEdge(edgeCnt, n, ed, INF,
0);
while (spfa(st, ed)){
mcf(st, ed);
}
printf(
"%d %d\n", ans1, ans2);
return 0;
}
转载请注明原文地址: https://ju.6miu.com/read-16133.html