【LeetCode】63. Unique Paths II

    xiaoxiao2021-03-25  81

    题目描述

    Follow up for “Unique Paths”:

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    For example,

    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [ [0,0,0], [0,1,0], [0,0,0] ]

    The total number of unique paths is 2.

    Note: m and n will be at most 100.

    解题思路

    动态规划。 思路与【LeetCode】62. Unique Paths 基本相同。 只是此处需要加多一个对于障碍物obstacle的判断,如果所在的地方是障碍物,那么应该将它的状态设置为0,因为没有任何路线可以到达它。 注意开始处和结束处不可以是障碍物。

    AC代码

    class Solution { public: int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { int ans = 0; int m = obstacleGrid.size(); if (m == 0) return ans; int n = obstacleGrid[0].size(); if (n == 0) return ans; if (obstacleGrid[0][0] || obstacleGrid[m - 1][n - 1]) return ans; vector<vector<int>> dp; for (int i = 0; i <= m; ++i) { vector<int> temp(n + 1, 0); dp.push_back(temp); } for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (i == 1 && j == 1) dp[i][j] = 1; else if (obstacleGrid[i - 1][j - 1]) dp[i][j] = 0; else dp[i][j] = dp[i][j - 1] + dp[i - 1][j]; } } return dp[m][n]; } };
    转载请注明原文地址: https://ju.6miu.com/read-16521.html

    最新回复(0)