Caffe源码(caffe version commit: 09868ac , date: 2015.08.15)中有一些重要的头文件,这里介绍下include/caffe/layer.hpp文件的内容:
1. include文件:
(1)、<caffe/blob.hpp>:此文件的介绍可以参考:http://blog.csdn.net/fengbingchun/article/details/59106613
(2)、<caffe/common.hpp>:此文件的介绍可以参考:http://blog.csdn.net/fengbingchun/article/details/54955236
(3)、<caffe/layer_factory.hpp>:此文件的介绍可以参考:http://blog.csdn.net/fengbingchun/article/details/54310956
(4)、<caffe/proto/caffe.pb.h>:此文件的介绍可以参考:http://blog.csdn.net/fengbingchun/article/details/55267162
(5)、<caffe/util/device_alternate.hpp>:此文件的介绍可以参考:http://blog.csdn.net/fengbingchun/article/details/54955236
2. 类Layer:抽象基类,有纯虚函数,不能实例化,定义了所有layer的基本接口,具体的每个layer完成一类特定的计算
Layer是Caffe模型的本质内容和执行计算的基本单元。Layer可以进行很多运算,如convolve(卷积)、pool(池化)、inner product(内积),rectified-linear和sigmoid等非线性运算,元素级的数据变换,normalize(归一化)、load data(数据加载)、softmax和hinge等losses(损失计算)。可在Caffe的 http://caffe.berkeleyvision.org/tutorial/layers.html (层目录)中查看所有操作,其囊括了绝大部分目前最前沿的深度学习任务所需要的层类型。
一个layer通过bottom(底部) 连接层接收blobs数据,通过top(顶部)连接层输出blobs数据。Caffe中每种类型layer的参数说明定义在caffe.proto文件中,具体的layer参数值则定义在具体应用的prototxt网络结构说明文件中。
在Caffe中,一个网络的大部分功能都是以layer的形式去展开的。在创建一个Caffe模型的时候,也是以layer为基础进行的,需按照caffe.proto中定义的网络及参数格式定义网络prototxt文件。在.prototxt文件中会有很多个layer { } 字段。
每一个layer都定义了3种重要的运算:setup(初始化设置),forward(前向传播),backward(反向传播)。
(1)、setup:在模型初始化时重置layers及其相互之间的连接;
(2)、forward:从bottom层中接收数据,进行计算后将输出送人到top层中;
(3)、backward:给定相对于top层输出的梯度,计算其相对于输入的梯度,并传递到bottom层。一个有参数的layer需要计算相对于各个参数的梯度值并存储在内部。
特别地,forward和backward函数分别有CPU和GPU两张实现方式。如果没有实现GPU版本,那么layer将转向作为备用选项的CPU方式。这样会增加额外的数据传送成本(输入数据由GPU上复制到CPU,之后输出数据从CPU又复制回到GPU)。
总的来说,Layer承担了网络的两个核心操作:forward pass(前向传播)----接收输入并计算输出;backward pass(反向传播)----接收关于输出的梯度,计算相对于参数和输入的梯度并反向传播给在它前面的层。由此组成了每个layer的前向和反向传播。
Layer是网络的基本单元,由此派生出了各种层类。在Layer中input data用bottom表示,output data用top表示。由于Caffe网络的组合性和其代码的模块化,自定义layer是很容易的。只要定义好layer的setup(初始化设置)、forward(前向传播,根据input计算output)和backward(反向传播,根据output计算input的梯度),就可将layer纳入到网络中。
前传(forward)过程为给定的待推断的输入计算输出。在前传过程中,Caffe组合每一层的计算以得到整个模型的计算”函数”。本过程自底向上进行。
反传(backward)过程根据损失来计算梯度从而进行学习。在反传过程中,Caffe通过自动求导并反向组合每一层的梯度来计算整个网络的梯度。这就是反传过程的本质。本过程自顶向下进行。
反传过程以损失开始,然后根据输出计算梯度。根据链式准则,逐层计算出模型其余部分的梯度。有参数的层,会在反传过程中根据参数计算梯度。
与大多数的机器学习模型一样,在Caffe中,学习是由一个损失函数驱动的(通常也被称为误差、代价或者目标函数)。一个损失函数通过将参数集(即当前的网络权值)映射到一个可以标识这些参数”不良程度”的标量值来学习目标。因此,学习的目的是找到一个网络权重的集合,使得损失函数最小。
在Caffe中,损失是通过网络的前向计算得到的。每一层由一系列的输入blobs(bottom),然后产生一系列的输出blobs(top)。这些层的某些输出可以用来作为损失函数。典型的一对多分类任务的损失函数是softMaxWithLoss函数。
Caffe中每种类型layer的参数说明定义在caffe.proto文件中,具体的layer参数值则定义在具体应用的protobuf网络结构说明文件中。
注:以上关于Layer内容的介绍主要摘自由CaffeCN社区翻译的《Caffe官方教程中译本》。
<caffe/layer.hpp>文件的详细介绍如下:
#ifndef CAFFE_LAYER_H_ #define CAFFE_LAYER_H_ #include <algorithm> #include <string> #include <vector> #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/layer_factory.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/util/device_alternate.hpp" /** Forward declare boost::thread instead of including boost/thread.hpp to avoid a boost/NVCC issues (#1009, #1010) on OSX. */ // 前向声明boost的互斥类:boost::mutex namespace boost { class mutex; } namespace caffe { /** * @brief An interface for the units of computation which can be composed into a * Net. * * Layer%s must implement a Forward function, in which they take their input * (bottom) Blob%s (if any) and compute their output Blob%s (if any). * They may also implement a Backward function, in which they compute the error * gradients with respect to their input Blob%s, given the error gradients with * their output Blob%s. */ template <typename Dtype> class Layer { // 抽象基类,有纯虚函数,不能实例化,定义了所有layer的基本接口 public: /** * You should not implement your own constructor. Any set up code should go * to SetUp(), where the dimensions of the bottom blobs are provided to the * layer. */ // 显式构造函数,不需要重写,获得成员变量layer_param_、phase_、blobs_的值 explicit Layer(const LayerParameter& param) : layer_param_(param), is_shared_(false) { // Set phase and copy blobs (if there are any). phase_ = param.phase(); if (layer_param_.blobs_size() > 0) { blobs_.resize(layer_param_.blobs_size()); for (int i = 0; i < layer_param_.blobs_size(); ++i) { blobs_[i].reset(new Blob<Dtype>()); blobs_[i]->FromProto(layer_param_.blobs(i)); } } } // 虚析构函数 virtual ~Layer() {} /** * @brief Implements common layer setup functionality. * * @param bottom the preshaped input blobs * @param top * the allocated but unshaped output blobs, to be shaped by Reshape * * Checks that the number of bottom and top blobs is correct. * Calls LayerSetUp to do special layer setup for individual layer types, * followed by Reshape to set up sizes of top blobs and internal buffers. * Sets up the loss weight multiplier blobs for any non-zero loss weights. * This method may not be overridden. */ // layer初始化,此方法不需要重写 void SetUp(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { InitMutex(); CheckBlobCounts(bottom, top); LayerSetUp(bottom, top); Reshape(bottom, top); SetLossWeights(top); } /** * @brief Does layer-specific setup: your layer should implement this function * as well as Reshape. * * @param bottom * the preshaped input blobs, whose data fields store the input data for * this layer * @param top * the allocated but unshaped output blobs * * This method should do one-time layer specific setup. This includes reading * and processing relevent parameters from the <code>layer_param_</code>. * Setting up the shapes of top blobs and internal buffers should be done in * <code>Reshape</code>, which will be called before the forward pass to * adjust the top blob sizes. */ // 通过Layer参数即LayerParameter类获得layer中某些成员变量的值 virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {} /** * @brief Whether a layer should be shared by multiple nets during data * parallelism. By default, all layers except for data layers should * not be shared. data layers should be shared to ensure each worker * solver access data sequentially during data parallelism. */ // 获得layer data共享状态:一个layer的data是否被多个net共享 virtual inline bool ShareInParallel() const { return false; } /** @brief Return whether this layer is actually shared by other nets. * If ShareInParallel() is true and using more than one GPU and the * net has TRAIN phase, then this function is expected return true. */ // 获得layer是否被其它net共享 inline bool IsShared() const { return is_shared_; } /** @brief Set whether this layer is actually shared by other nets * If ShareInParallel() is true and using more than one GPU and the * net has TRAIN phase, then is_shared should be set true. */ // 设置layer是否被其它net共享 inline void SetShared(bool is_shared) { CHECK(ShareInParallel() || !is_shared) << type() << "Layer does not support sharing."; is_shared_ = is_shared; } /** * @brief Adjust the shapes of top blobs and internal buffers to accommodate * the shapes of the bottom blobs. * * @param bottom the input blobs, with the requested input shapes * @param top the top blobs, which should be reshaped as needed * * This method should reshape top blobs as needed according to the shapes * of the bottom (input) blobs, as well as reshaping any internal buffers * and making any other necessary adjustments so that the layer can * accommodate the bottom blobs. */ // 调整top blobs的shape virtual void Reshape(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) = 0; /** * @brief Given the bottom blobs, compute the top blobs and the loss. * * @param bottom * the input blobs, whose data fields store the input data for this layer * @param top * the preshaped output blobs, whose data fields will store this layers' * outputs * \return The total loss from the layer. * * The Forward wrapper calls the relevant device wrapper function * (Forward_cpu or Forward_gpu) to compute the top blob values given the * bottom blobs. If the layer has any non-zero loss_weights, the wrapper * then computes and returns the loss. * * Your layer should implement Forward_cpu and (optionally) Forward_gpu. */ // 前向传播,通过输入bottom blobs,计算输出top blobs和返回loss和 inline Dtype Forward(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top); /** * @brief Given the top blob error gradients, compute the bottom blob error * gradients. * * @param top * the output blobs, whose diff fields store the gradient of the error * with respect to themselves * @param propagate_down * a vector with equal length to bottom, with each index indicating * whether to propagate the error gradients down to the bottom blob at * the corresponding index * @param bottom * the input blobs, whose diff fields will store the gradient of the error * with respect to themselves after Backward is run * * The Backward wrapper calls the relevant device wrapper function * (Backward_cpu or Backward_gpu) to compute the bottom blob diffs given the * top blob diffs. * * Your layer should implement Backward_cpu and (optionally) Backward_gpu. */ // 反向传播,通过给定top blob误差梯度,计算bottom blob误差梯度 inline void Backward(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom); /** * @brief Returns the vector of learnable parameter blobs. */ // 获得layer的权值、偏置等 vector<shared_ptr<Blob<Dtype> > >& blobs() { return blobs_; } /** * @brief Returns the layer parameter. */ // 获得layer的配置参数 const LayerParameter& layer_param() const { return layer_param_; } /** * @brief Writes the layer parameter to a protocol buffer */ // 序列化函数,将layer参数写入protobuf文件 virtual void ToProto(LayerParameter* param, bool write_diff = false); /** * @brief Returns the scalar loss associated with a top blob at a given index. */ // 获得top blob指定index的loss值 inline Dtype loss(const int top_index) const { return (loss_.size() > top_index) ? loss_[top_index] : Dtype(0); } /** * @brief Sets the loss associated with a top blob at a given index. */ // 设置top blob指定index的loss值 inline void set_loss(const int top_index, const Dtype value) { if (loss_.size() <= top_index) { loss_.resize(top_index + 1, Dtype(0)); } loss_[top_index] = value; } /** * @brief Returns the layer type. */ // 获得layer的类型 virtual inline const char* type() const { return ""; } /** * @brief Returns the exact number of bottom blobs required by the layer, * or -1 if no exact number is required. * * This method should be overridden to return a non-negative value if your * layer expects some exact number of bottom blobs. */ // 获得layer所需的bottom blobs的个数 virtual inline int ExactNumBottomBlobs() const { return -1; } /** * @brief Returns the minimum number of bottom blobs required by the layer, * or -1 if no minimum number is required. * * This method should be overridden to return a non-negative value if your * layer expects some minimum number of bottom blobs. */ // 获得layer所需的bottom blobs的最少个数 virtual inline int MinBottomBlobs() const { return -1; } /** * @brief Returns the maximum number of bottom blobs required by the layer, * or -1 if no maximum number is required. * * This method should be overridden to return a non-negative value if your * layer expects some maximum number of bottom blobs. */ // 获得layer所需的bottom blobs的最多个数 virtual inline int MaxBottomBlobs() const { return -1; } /** * @brief Returns the exact number of top blobs required by the layer, * or -1 if no exact number is required. * * This method should be overridden to return a non-negative value if your * layer expects some exact number of top blobs. */ // 获得layer所需的top blobs的个数 virtual inline int ExactNumTopBlobs() const { return -1; } /** * @brief Returns the minimum number of top blobs required by the layer, * or -1 if no minimum number is required. * * This method should be overridden to return a non-negative value if your * layer expects some minimum number of top blobs. */ // 获得layer所需的top blobs的最少个数 virtual inline int MinTopBlobs() const { return -1; } /** * @brief Returns the maximum number of top blobs required by the layer, * or -1 if no maximum number is required. * * This method should be overridden to return a non-negative value if your * layer expects some maximum number of top blobs. */ // 获得layer所需的top blobs的最多个数 virtual inline int MaxTopBlobs() const { return -1; } /** * @brief Returns true if the layer requires an equal number of bottom and * top blobs. * * This method should be overridden to return true if your layer expects an * equal number of bottom and top blobs. */ // 判断layer所需的bottom blobs和top blobs的个数是否相等 virtual inline bool EqualNumBottomTopBlobs() const { return false; } /** * @brief Return whether "anonymous" top blobs are created automatically * by the layer. * * If this method returns true, Net::Init will create enough "anonymous" top * blobs to fulfill the requirement specified by ExactNumTopBlobs() or * MinTopBlobs(). */ // 判断layer所需的的top blobs是否需要由Net::Init来创建 virtual inline bool AutoTopBlobs() const { return false; } /** * @brief Return whether to allow force_backward for a given bottom blob * index. * * If AllowForceBackward(i) == false, we will ignore the force_backward * setting and backpropagate to blob i only if it needs gradient information * (as is done when force_backward == false). */ // 判断layer指定的bottom blob是否需要强制梯度返回,因为有些layer其实不需要梯度信息 virtual inline bool AllowForceBackward(const int bottom_index) const { return true; } /** * @brief Specifies whether the layer should compute gradients w.r.t. a * parameter at a particular index given by param_id. * * You can safely ignore false values and always compute gradients * for all parameters, but possibly with wasteful computation. */ // 判断layer指定的blob是否应该计算梯度 inline bool param_propagate_down(const int param_id) { return (param_propagate_down_.size() > param_id) ? param_propagate_down_[param_id] : false; } /** * @brief Sets whether the layer should compute gradients w.r.t. a * parameter at a particular index given by param_id. */ // 设置layer指定的blob是否应该计算梯度 inline void set_param_propagate_down(const int param_id, const bool value) { if (param_propagate_down_.size() <= param_id) { param_propagate_down_.resize(param_id + 1, true); } param_propagate_down_[param_id] = value; } protected: // Caffe中类的成员变量名都带有后缀"_",这样就容易区分临时变量和类成员变量 /** The protobuf that stores the layer parameters */ // 配置的layer参数,创建layer对象时,通过调用构造函数从上层传入, // 关于LayerParameter类的具体参数可参考caffe.proto中的message LayerParameter LayerParameter layer_param_; /** The phase: TRAIN or TEST */ // layer状态:指定参与网络的是train还是test, Phase phase_; /** The vector that stores the learnable parameters as a set of blobs. */ // 用于存储layer的学习的参数如权值和偏置 vector<shared_ptr<Blob<Dtype> > > blobs_; /** Vector indicating whether to compute the diff of each param blob. */ // 标志是否为layer指定的blob计算梯度值 vector<bool> param_propagate_down_; /** The vector that indicates whether each top blob has a non-zero weight in * the objective function. */ // 标志layer指定的top blob是否有一个非0权值 vector<Dtype> loss_; /** @brief Using the CPU device, compute the layer output. */ // CPU实现layer的前向传播 virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) = 0; /** * @brief Using the GPU device, compute the layer output. * Fall back to Forward_cpu() if unavailable. */ // GPU实现layer的前向传播 virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { // LOG(WARNING) << "Using CPU code as backup."; return Forward_cpu(bottom, top); } /** * @brief Using the CPU device, compute the gradients for any parameters and * for the bottom blobs if propagate_down is true. */ // CPU实现layer的反向传播 virtual void Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) = 0; /** * @brief Using the GPU device, compute the gradients for any parameters and * for the bottom blobs if propagate_down is true. * Fall back to Backward_cpu() if unavailable. */ // GPU实现layer的反向传播 virtual void Backward_gpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { // LOG(WARNING) << "Using CPU code as backup."; Backward_cpu(top, propagate_down, bottom); } /** * Called by the parent Layer's SetUp to check that the number of bottom * and top Blobs provided as input match the expected numbers specified by * the {ExactNum,Min,Max}{Bottom,Top}Blobs() functions. */ // 检查bottom 和top blobs个数是否匹配 virtual void CheckBlobCounts(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { if (ExactNumBottomBlobs() >= 0) { CHECK_EQ(ExactNumBottomBlobs(), bottom.size()) << type() << " Layer takes " << ExactNumBottomBlobs() << " bottom blob(s) as input."; } if (MinBottomBlobs() >= 0) { CHECK_LE(MinBottomBlobs(), bottom.size()) << type() << " Layer takes at least " << MinBottomBlobs() << " bottom blob(s) as input."; } if (MaxBottomBlobs() >= 0) { CHECK_GE(MaxBottomBlobs(), bottom.size()) << type() << " Layer takes at most " << MaxBottomBlobs() << " bottom blob(s) as input."; } if (ExactNumTopBlobs() >= 0) { CHECK_EQ(ExactNumTopBlobs(), top.size()) << type() << " Layer produces " << ExactNumTopBlobs() << " top blob(s) as output."; } if (MinTopBlobs() >= 0) { CHECK_LE(MinTopBlobs(), top.size()) << type() << " Layer produces at least " << MinTopBlobs() << " top blob(s) as output."; } if (MaxTopBlobs() >= 0) { CHECK_GE(MaxTopBlobs(), top.size()) << type() << " Layer produces at most " << MaxTopBlobs() << " top blob(s) as output."; } if (EqualNumBottomTopBlobs()) { CHECK_EQ(bottom.size(), top.size()) << type() << " Layer produces one top blob as output for each " << "bottom blob input."; } } /** * Called by SetUp to initialize the weights associated with any top blobs in * the loss function. Store non-zero loss weights in the diff blob. */ // 设置top blobs中diff值 inline void SetLossWeights(const vector<Blob<Dtype>*>& top) { const int num_loss_weights = layer_param_.loss_weight_size(); if (num_loss_weights) { CHECK_EQ(top.size(), num_loss_weights) << "loss_weight must be " "unspecified or specified once per top blob."; for (int top_id = 0; top_id < top.size(); ++top_id) { const Dtype loss_weight = layer_param_.loss_weight(top_id); if (loss_weight == Dtype(0)) { continue; } this->set_loss(top_id, loss_weight); const int count = top[top_id]->count(); Dtype* loss_multiplier = top[top_id]->mutable_cpu_diff(); caffe_set(count, loss_weight, loss_multiplier); } } } private: /** Whether this layer is actually shared by other nets*/ //标志当前layer是否被其它net共享 bool is_shared_; /** The mutex for sequential forward if this layer is shared */ // 声明boost::mutex对象,互斥锁变量 shared_ptr<boost::mutex> forward_mutex_; /** Initialize forward_mutex_ */ // 初始化互斥锁 void InitMutex(); /** Lock forward_mutex_ if this layer is shared */ // 如果layer是共享的则加锁 void Lock(); /** Unlock forward_mutex_ if this layer is shared */ // 如果layer是共享的则解锁 void Unlock(); // 禁止使用Layer类的拷贝和赋值操作 DISABLE_COPY_AND_ASSIGN(Layer); }; // class Layer // Forward and backward wrappers. You should implement the cpu and // gpu specific implementations instead, and should not change these // functions. // 前向传播,通过输入bottom blobs,计算输出top blobs和loss值 template <typename Dtype> inline Dtype Layer<Dtype>::Forward(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { // Lock during forward to ensure sequential forward Lock(); Dtype loss = 0; Reshape(bottom, top); switch (Caffe::mode()) { case Caffe::CPU: Forward_cpu(bottom, top); for (int top_id = 0; top_id < top.size(); ++top_id) { if (!this->loss(top_id)) { continue; } const int count = top[top_id]->count(); const Dtype* data = top[top_id]->cpu_data(); const Dtype* loss_weights = top[top_id]->cpu_diff(); loss += caffe_cpu_dot(count, data, loss_weights); } break; case Caffe::GPU: Forward_gpu(bottom, top); #ifndef CPU_ONLY for (int top_id = 0; top_id < top.size(); ++top_id) { if (!this->loss(top_id)) { continue; } const int count = top[top_id]->count(); const Dtype* data = top[top_id]->gpu_data(); const Dtype* loss_weights = top[top_id]->gpu_diff(); Dtype blob_loss = 0; caffe_gpu_dot(count, data, loss_weights, &blob_loss); loss += blob_loss; } #endif break; default: LOG(FATAL) << "Unknown caffe mode."; } Unlock(); return loss; } // 反向传播,通过给定top blob误差梯度,计算bottom blob误差梯度 template <typename Dtype> inline void Layer<Dtype>::Backward(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { switch (Caffe::mode()) { case Caffe::CPU: Backward_cpu(top, propagate_down, bottom); break; case Caffe::GPU: Backward_gpu(top, propagate_down, bottom); break; default: LOG(FATAL) << "Unknown caffe mode."; } } // Serialize LayerParameter to protocol buffer // 序列化函数,将layer参数写入protobuf文件 template <typename Dtype> void Layer<Dtype>::ToProto(LayerParameter* param, bool write_diff) { param->Clear(); param->CopyFrom(layer_param_); param->clear_blobs(); for (int i = 0; i < blobs_.size(); ++i) { blobs_[i]->ToProto(param->add_blobs(), write_diff); } } } // namespace caffe #endif // CAFFE_LAYER_H_ 在caffe.proto文件中,主要 有一个message是与layer 相关的,如下: enum Phase { // layer状态:train、test TRAIN = 0; TEST = 1; } // NOTE // Update the next available ID when you add a new LayerParameter field. // // LayerParameter next available layer-specific ID: 137 (last added: reduction_param) message LayerParameter { // Layer参数 optional string name = 1; // the layer name, layer名字,可由自己任意制定 optional string type = 2; // the layer type, layer类型,在具体层中写定,可以通过type()函数获得 repeated string bottom = 3; // the name of each bottom blob, bottom名字,可有多个 repeated string top = 4; // the name of each top blob,top名字,可有多个 // The train / test phase for computation. optional Phase phase = 10; // layer状态:enum Phase {TRAIN = 0; TEST = 1;} // The amount of weight to assign each top blob in the objective. // Each layer assigns a default value, usually of either 0 or 1, // to each top blob. repeated float loss_weight = 5; // 个数必须与top blob一致 // Specifies training parameters (multipliers on global learning constants, // and the name and other settings used for weight sharing). repeated ParamSpec param = 6; // train时用到的参数 // The blobs containing the numeric parameters of the layer. repeated BlobProto blobs = 7; // blobs个数 // Specifies on which bottoms the backpropagation should be skipped. // The size must be either 0 or equal to the number of bottoms. repeated bool propagate_down = 11; // 长度或者是0或者与bottoms个数一致 // Rules controlling whether and when a layer is included in the network, // based on the current NetState. You may specify a non-zero number of rules // to include OR exclude, but not both. If no include or exclude rules are // specified, the layer is always included. If the current NetState meets // ANY (i.e., one or more) of the specified rules, the layer is // included/excluded. repeated NetStateRule include = 8; // net state rule repeated NetStateRule exclude = 9; // net state rule // Parameters for data pre-processing. optional TransformationParameter transform_param = 100; // 对data进行预处理包括缩放、剪切等 // Parameters shared by loss layers. optional LossParameter loss_param = 101; // loss parameters // Layer type-specific parameters. // // Note: certain layers may have more than one computational engine // for their implementation. These layers include an Engine type and // engine parameter for selecting the implementation. // The default for the engine is set by the ENGINE switch at compile-time. // 具体layer参数 optional AccuracyParameter accuracy_param = 102; optional ArgMaxParameter argmax_param = 103; optional ConcatParameter concat_param = 104; optional ContrastiveLossParameter contrastive_loss_param = 105; optional ConvolutionParameter convolution_param = 106; optional DataParameter data_param = 107; optional DropoutParameter dropout_param = 108; optional DummyDataParameter dummy_data_param = 109; optional EltwiseParameter eltwise_param = 110; optional ExpParameter exp_param = 111; optional FlattenParameter flatten_param = 135; optional HDF5DataParameter hdf5_data_param = 112; optional HDF5OutputParameter hdf5_output_param = 113; optional HingeLossParameter hinge_loss_param = 114; optional ImageDataParameter image_data_param = 115; optional InfogainLossParameter infogain_loss_param = 116; optional InnerProductParameter inner_product_param = 117; optional LogParameter log_param = 134; optional LRNParameter lrn_param = 118; optional MemoryDataParameter memory_data_param = 119; optional MVNParameter mvn_param = 120; optional PoolingParameter pooling_param = 121; optional PowerParameter power_param = 122; optional PReLUParameter prelu_param = 131; optional PythonParameter python_param = 130; optional ReductionParameter reduction_param = 136; optional ReLUParameter relu_param = 123; optional ReshapeParameter reshape_param = 133; optional SigmoidParameter sigmoid_param = 124; optional SoftmaxParameter softmax_param = 125; optional SPPParameter spp_param = 132; optional SliceParameter slice_param = 126; optional TanHParameter tanh_param = 127; optional ThresholdParameter threshold_param = 128; optional WindowDataParameter window_data_param = 129; } GitHub: https://github.com/fengbingchun/Caffe_Test