数组的算术运算是按元素逐个运算。数组运算后将创建包含运算结果的新数组。
与其他矩阵语言不同,NumPy中的乘法运算符*按元素逐个计算,矩阵乘法可以使用dot函数或创建矩阵对象实现(后续介绍)
>>> a= np.array([20,30,40,50])
>>> b= np.arange( 4)
>>> b
array([0, 1, 2, 3])
>>> c= a-b
>>> c
array([20, 29, 38, 47])
将运算结果更新原数组,不创建新数组
>>> a= np.ones((2,3), dtype=int)
>>> b= np.random.random((2,3)) ##生成2*3矩阵,元素为[0,1)范围的随机数
>>> a*= 3
>>> a
array([[3, 3, 3],
[3, 3, 3]])
>>> b+= a #a转换为浮点类型相加
>>> b
array([[ 3.69092703, 3.8324276, 3.0114541],
[ 3.18679111, 3.3039349, 3.37600289]])
>>> a+= b # b转换为整数类型报错
TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int32') with casting rule 'same_kind'
当数组中存储的是不同类型的元素时,数组将使用占用更多位(bit)的数据类型作为其本身的数据类型,也就是偏向更精确的数据类型(这种行为叫做upcast)。
>>> a= np.ones(3, dtype=np.int32)
>>> b= np.linspace(0,np.pi,3)
>>> b.dtype.name
'float64'
>>> c= a+b
>>> c
array([ 1., 2.57079633, 4.14159265])
>>> 'float64'
>>>b=np.arange(4)
array([0,1,2,3])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251,-9.88031624, 7.4511316, -2.62374854])
>>> a<35
array([True, True, False, False], dtype=bool)
许多非数组运算,如计算数组所有元素之和,都作为ndarray类的方法来实现,使用时需要用ndarray类的实例来调用这些方法。
二维数组:
>>> np.sum([[0, 1], [0, 5]])
6 //求所有元素的和
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6]) //求各列的和
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5]) //求各行的和
>>> b= np.arange(12).reshape(3,4)
>>> b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> b.sum(axis=0) # 计算每一列的和
array([12, 15, 18, 21])
>>> b.min(axis=1) # 获取每一行的最小值
array([0, 4, 8])
>>> b.cumsum(axis=1) # 计算每一行的累积和
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
三维数组:
>>> x
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])
>>> x.sum(axis=1)
array([[ 9, 12, 15],
[36, 39, 42],
[63, 66, 69]])
>>> x.sum(axis=2)
array([[ 3, 12, 21],
[30, 39, 48],
[57, 66, 75]])
求元素最值
>>> a= np.random.random((2,3))
>>> a
array([[ 0.65806048, 0.58216761, 0.59986935],[ 0.6004008, 0.41965453, 0.71487337]])
>>> a.sum()
3.5750261436902333
>>> a.min()
0.41965453489104032
>>> a.max()
0.71487337095581649