C++面试基础

    xiaoxiao2021-03-25  5

    各种二进制的本质:

    原码:将一个整数,转换成二进制,就是其原码。如单字节的5的原码为:0000   0101;-5的原码为1000 0101。  反码:正数的反码就是其原码;负数的反码是将原码中,除符号位以外,每一位取  反。如单字节的5的反码为:0000 0101;-5的反码为1111 1010。      补码:正数的补码就是其原码;负数的反码+1就是补码。如单字节的5的补码为:0000 0101;-5的补码为1111 1011。  在计算机中,正数是直接用原码表示的,如单字节5,在计算机中就表示为:0000 0101。负数用补码表示,如单字节-5,在计算机中表示为1111 1011。  为什么在计算机中,负数用补码表示呢?为什么不直接用原码表示?如单字节-5:1000 0101。  我想从软件上考虑,原因有两个:    1、表示范围 拿单字节整数来说,无符号型,其表示范围是[0,255],总共表示了256个数据。有符号型,其表示范围是[-128,127]。 先看无符号,0表示为0000 0000,255表示为1111 1111,刚好满足了要求,可以表示256个数据。  再看有符号的,若是用原码表示,0表示为0000 000。因为咱们有符号,所以应该也有个负0(虽然它还是0):1000 0000。  那我们看看这样还能够满足我们的要求,表示256个数据么? 正数,没问题,127是0111 1111,1是0000 0001,当然其它的应该也没有问题。   负数呢,-1是1000 0001,那么把负号去掉,最大的数是111 1111,也就是127,所以负数中最小能表示的数据是-127。  这样似乎不太对劲,该如何去表示-128?貌似直接用原码无法表示,而我们却有两个0。   如果我们把其中的一个0指定为-128,不行么?这也是一个想法,不过有两个问题:一是它与-127的跨度过大;二是在用硬件进行运算时不方便。  所以,计算机中,负数是采用补码表示。如单字节-1,原码为1000 0001,反码为1111 1110,补码为1111 1111,计算机中的单字节-1就表示为1111 1111。 单字节-127,原码是1111 1111,反码1000 0000,补码是1000 0001,计算机中单字节-127表示为1000 0001。 单字节-12原码貌似表示不出来,除了符8,号为,最大的数只能是127了,其在计算机中的表示为1000 0000。

    sizeof的相关问题:

    堆 和 栈

    一、预备知识—程序的内存分配   一个由C/C++编译的程序占用的内存分为以下几个部分   1、栈区(stack)—   由编译器自动分配释放   ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。   2、堆区(heap)   —   一般由程序员分配释放,   若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。   3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另   一块区域。   -   程序结束后由系统释放。   4、文字常量区   —常量字符串就是放在这里的。程序结束后由系统释放   5、程序代码区—存放函数体的二进制代码。  

    int   a   =   0;   全局初始化区     char   *p1;   全局未初始化区     main()     {     int   b;   栈     char   s[]   =   "abc";   栈     char   *p2;   栈     char   *p3   =   "123456";   123456/0在常量区,p3在栈上。     static   int   c  =  0;   全局(静态)初始化区     p1   =   (char   *)malloc(10);     p2   =   (char   *)malloc(20);     分配得来得10和20字节的区域就在堆区。     strcpy(p1,   "123456");   123456/0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。     }    

    1申请方式     栈: 由系统自动分配。例如,声明在函数中一个局部变量   int   b;   系统自动在栈中为b开辟空  间     堆: 需要程序员自己申请,并指明大小,在c中malloc函数     如p1   =   (char   *)malloc(10);     在C++中用new运算符     如p2   =   new   char[10]; 但是注意p1、p2本身是在栈中的。 

    2 申请后系统的响应     栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。     堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。 

    3申请大小的限制     栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。     堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

    4申请效率的比较:

    栈:由系统自动分配,速度较快。但程序员是无法控制的。     堆:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一块内存,虽然用起来最不方便。但是速度快,也最灵活。

    5堆和栈中的存储内容     栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈 的,然后是函数中的局部变量。注意静态变量是不入栈的。当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。     堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容由程序员安排。

    6存取效率的比较     char   s1[]   =   "aaaaaaaaaaaaaaa";     char   *s2   =   "bbbbbbbbbbbbbbbbb";     aaaaaaaaaaa是在运行时刻赋值的;     而bbbbbbbbbbb是在编译时就确定的;     但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。     比如:     #include     void   main()     {     char   a   =   1;     char   c[]   =   "1234567890";     char   *p   ="1234567890";     a   =   c[1];     a   =   p[1];     return;     }     对应的汇编代码     10:   a   =   c[1];     00401067   8A   4D   F1   mov   cl,byte   ptr   [ebp-0Fh]     0040106A   88   4D   FC   mov   byte   ptr   [ebp-4],cl     11:   a   =   p[1];     0040106D   8B   55   EC   mov   edx,dword   ptr   [ebp-14h]     00401070   8A   42   01   mov   al,byte   ptr   [edx+1]     00401073   88   45   FC   mov   byte   ptr   [ebp-4],al     第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,再根据edx读取字符,显然慢了。 

    堆和栈的区别可以用如下的比喻来看出:     使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。     使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。   (经典!) 

    死锁的四个必要条件: 互斥条件(Mutual exclusion):资源不能被共享,只能由一个进程使用。 请求与保持条件(Hold and wait):已经得到资源的进程可以再次申请新的资源。 非剥夺条件(No pre-emption):已经分配的资源不能从相应的进程中被强制地剥夺。 循环等待条件(Circular wait):系统中若干进程组成环路,该环路中每个进程都在等待相邻进程正占用的资源。 在系统中已经出现死锁后,应该及时检测到死锁的发生,并采取适当的措施来解除死锁。目前处理死锁的方法可归结为以下四种: 1) 预防死锁。这是一种较简单和直观的事先预防的方法。方法是通过设置某些限制条件,去破坏产生死锁的四个必要条件中的一个或者几个,来预防发生死锁。预防死锁是一种较易实现的方法,已被广泛使用。但是由于所施加的限制条件往往太严格,可能会导致系统资源利用率和系统吞吐量降低。 2) 避免死锁。该方法同样是属于事先预防的策略,但它并不须事先采取各种限制措施去破坏产生死锁的的四个必要条件,而是在资源的动态分配过程中,用某种方法去防止系统进入不安全状态,从而避免发生死锁。 3)检测死锁。这种方法并不须事先采取任何限制性措施,也不必检查系统是否已经进入不安全区,此方法允许系统在运行过程中发生死锁。但可通过系统所设置的检测机构,及时地检测出死锁的发生,并精确地确定与死锁有关的进程和资源,然后采取适当措施,从系统中将已发生的死锁清除掉。 4)解除死锁。这是与检测死锁相配套的一种措施。当检测到系统中已发生死锁时,须将进程从死锁状态中解脱出来。常用的实施方法是撤销或挂起一些进程,以便回收一些资源,再将这些资源分配给已处于阻塞状态的进程,使之转为就绪状态,以继续运行。死锁的检测和解除措施,有可能使系统获得较好的资源利用率和吞吐量,但在实现上难度也最大。

    http://c.biancheng.net/cpp/html/2606.html  操作系统

    操作系统重新学习: 操作系统的基本特征包括并发、共享、虚拟和异步。 并发和并行:并发是指两个或多个事件在同一时间间隔内发生。操作系统的并发性是指计算机系统中同时存在多个运行着的程序,因此它具有处理和调度多个程序同时执行的能力。在操作系统中,引入进程的目的是使程序能并发执行。 注意同一时间间隔(并发)和同一时刻(并行)的区别。在多道程序环境下,一段时间内,宏观上有多道程序在同时执行,而在每一时刻,单处理机环境下实际仅能有一道程序执行,故微观上这些程序还是在分时地交替执行。橾作系统的并发性是通过分时得以实现的。 注意,并行性是指系统具有可以同时进行运算或操作的特性,在同一时刻完成两种或两种以上的工作。并行性需要有相关硬件的支持,如多流水线或多处理机硬件环境 共享:a互斥共享:A持有B不可持有。b同时访问方式:系统中还有另一类资源,允许在一段时间内由多个进程“同时”对它们进行访问。这里所谓的“同时”往往是宏观上的,而在微观上,这些进程可能是交替地对该资源进行访问即 “分时共享”。 并发和共享是操作系统两个最基本的特征,这两者之间又是互为存在条件的: a.资源共享是以程序的并发为条件的,若系统不允许程序并发执行,则自然不存在资源共享问题; b.若系统不能对资源共享实施有效的管理,也必将影响到程序的并发执行,甚至根本无法并发执行。 虚拟: 虚拟处理器:虽然只有一个处理器,但它能同时为多个用户服务,使每个终端用户都感觉有一个中央处理器(CPU)在专门为它服务。利用多道程序设计技术,把一个物理上的CPU虚拟为多个逻辑上的CPU,称为虚拟处理器 虚拟存储器技术,将一台机器的物理存储器变为虚拟存储器,以便从逻辑上来扩充存储器的容量。当然,这时用户所感觉到的内存容量是虚的。我们把用户所感觉到的存储器(实际是不存在的)称为虚拟存储器。 虚拟设备技术,将一台物理I/O设备虚拟为多台逻辑上的I/O设备,并允许每个用户占用一台逻辑上的I/O设备,这样便可以使原来仅允许在一段时间内由一个用户访问的设备(即临界资源),变为在一段时间内允许多个用户同时访问的共享设备 批处理技术: 1) 单道批处理系统: 自动性。在顺利的情况下,在磁带上的一批作业能自动地逐个依次运行,而无需人工干预。 ' 顺序性。磁带上的各道作业是顺序地进入内存,各道作业的完成顺序与它们进入内存的顺序,在正常情况下应完全相同,亦即先调入内存的作业先完成。 单道性。内存中仅有一道程序运行,即监督程序每次从磁带上只调入一道程序进入内存运行,当该程序完成或发生异常情况时,才换入其后继程序进入内存运行。 2) 多道批处理系统 多道程序设计技术允许多个程序同时进入内存并运行。即同时把多个程序放入内存,并允许它们交替在CPU中运行,它们共享系统中的各种硬、软件资源。当一道程序因I/O请求而暂停运行时,CPU便立即转去运行另一道程序。它没有用某些机制提高某一技术方面的瓶颈问题,而是让系统的各个组成部分都尽量去“忙”,花费很少时间去切换任务,达到了系统各部件之间的并行工作,使其整体在单位时间内的效率翻倍。 多道程序设计的特点有: 多道:计算机内存中同时存放多道相互独立的程序。 宏观上并行:同时进入系统的多道程序都处于运行过程中,即它们先后开始了各自的运行,但都未运行完毕。 微观上串行:内存中的多道程序轮流占有CPU,交替执行。 优点是资源利用率高,多道程序共享计算机资源,从而使各种资源得到充分利用;系统吞吐量大,CPU和其他资源保持“忙碌”状态。缺点是用户响应的时间较长。不提供人机交互能力,用户既不能了解自己程序的运行情况,也不能控制计算机。 3)分时操作系统 多道批处理是实现作业自动控制而无需人工干预的系统,而分时系统是实现人机交互的系统,这使得分时系统具有与批处理系统不同的特征,其主要特征如下: 同时性。同时性也称多路性,指允许多个终端用户同时使用一台计算机,即一台计算机与若干台终端相连接,终端上的这些用户可以同时或基本同时使用计算机。 交互性。用户能够方便地与系统进行人-机对话,即用户通过终端釆用人4^1对话的方式直接控制程序运行,与同程序进行交互。 独立性。系统中多个用户可以彼此独立地进行操作,互不干扰,单个用户感觉不到别人也在使用这台计算机,好像只有自己单独使用这台计算机一样。 及时性。用户请求能在很短时间内获得响应。分时系统釆用时间片轮转方式使一台计算机同时为多个终端服务,使用户能够对系统的及时响应感到满意。 4)实时操作系统 及时性和可靠性 5)网络操作系统和分布式计算机系统

    操作系统的运行机制: 操作系统在具体实现上划分了用户态(目态)和核心态(管态),以严格区分两类程序。 在软件工程思想和结构程序设计方法的影响下诞生的现代操作系统,几乎都是层次式的结构。操作系统的各项功能分别被设置在不同的层次上。一些与硬件关联较紧密的模块,诸如时钟管理、中断处理、设备驱动等处于最底层。其次是运行频率较髙的程序,诸如进程管理、存储器管理和设备管理等。这两部分内容构成了操作系统的内核。这部分内容的指令操作工作在核心态。 大多数操作系统内核包括四个方面的内容。 1) 时钟管理 在计算机的各种部件中,时钟是最关键的设备。时钟的第一功能是计时,操作系统需要通过时钟管理,向用户提供标准的系统时间。另外,通过时钟中断的管理,可以实现进程的切换。诸如,在分时操作系统中,釆用时间片轮转调度的实现;在实时系统中,按截止时间控制运行的实现;在批处理系统中,通过时钟管理来衡量一个作业的运行程度等。因此,系统管理的方方面面无不依赖于时钟。 2) 中断机制 引入中断技术的初衷是提高多道程序运行环境中CPU的利用率,而且主要是针对外部设备的。后来逐步得到发展,形成了多种类型,成为操作系统各项操作的基础。例如,键盘或鼠标信息的输入、进程的管理和调度、系统功能的调用、设备驱动、文件访问等,无不依赖于中断机制。可以说,现代操作系统是靠中断驱动的软件。中断机制中,只有一小部分功能属于内核,负责保护和恢复中断现场的信息,转移控制权到相关的处理程序。这样可以减少中断的处理时间,提高系统的并行处理能力。 3) 原语 按层次结构设计的操作系统,底层必然是一些可被调用的公用小程序,它们各自完成一个规定的操作。其特点是: 它们处于操作系统的最底层,是最接近硬件的部分。 这些程序的运行具有原子性——其操作只能一气呵成(这主要是从系统的安全性和便于管理考虑的)。 这些程序的运行时间都较短,而且调用频繁。 通常把具有这些特点的程序称为原语(Atomic Operation)。定义原语的直接方法是关闭中断,让它的所有动作不可分割地进行完再打开中断。 系统中的设备驱动、CPU切换、进程通信等功能中的部分操作都可以定义为原语,使它们成为内核的组成部分。 4) 系统控制的数据结构及处理 系统中用来登记状态信息的数据结构很多,比如作业控制块、进程控制块(PCB)、设备控制块、各类链表、消息队列、缓冲区、空闲区登记表、内存分配表等。为了实现有效的管理,系统需要一些基本的操作,常见的操作有以下三种: 进程管理:进程状态管理、进程调度和分派、创建与撤销进程控制块等。 存储器管理:存储器的空间分配和回收、内存信息保护程序、代码对换程序等。 设备管理:缓冲区管理、设备分配和回收等。 下面列举一些由用户态转向核心态的例子: 用户程序要求操作系统的服务,即系统调用。 发生一次中断。 用户程序中产生了一个错误状态。 用户程序中企图执行一条特权指令。 从核心态转向用户态由一条指令实现,这条指令也是特权命令。一般是中断返回指令。 进程和线程的管理 进程是进程实体的运行过程,是系统进行资源分配和调度的一个独立单位 进程是由多程序的并发执行而引出的,它和程序是两个截然不同的概念。进程的基本特征是对比单个程序的顺序执行提出的,也是对进程管理提出的基本要求。 动态性:进程是程序的一次执行,它有着创建、活动、暂停、终止等过程,具有一定的生命周期,是动态地产生、变化和消亡的。动态性是进程最基本的特征。 并发性:指多个进程实体,同存于内存中,能在一段时间内同时运行,并发性是进程的重要特征,同时也是操作系统的重要特征。引入进程的目的就是为了使程序能与其他进程的程序并发执行,以提高资源利用率。 独立性:指进程实体是一个能独立运行、独立获得资源和独立接受调度的基本单位。凡未建立PCB的程序都不能作为一个独立的单位参与运行。 异步性:由于进程的相互制约,使进程具有执行的间断性,即进程按各自独立的、 不可预知的速度向前推进。异步性会导致执行结果的不可再现性,为此,在操作系统中必须配置相应的进程同步机制。 结构性:每个进程都配置一个PCB对其进行描述。从结构上看,进程实体是由程序段、数据段和进程控制段三部分组成的。 进程的运行与状态

              创建               调度                 退出 创建状态 ----------> 就绪状态<==========> 运行状态----------->终止                                           |      时间到      |                       事件发生|                      |事件等待                         |                        |                        |<------阻塞<------|

    就绪状态 -> 运行状态:处于就绪状态的进程被调度后,获得处理机资源(分派处理机时间片),于是进程由就绪状态转换为运行状态。 运行状态 -> 就绪状态:处于运行状态的进程在时间片用完后,不得不让出处理机,从而进程由运行状态转换为就绪状态。此外,在可剥夺的操作系统中,当有更高优先级的进程就 、 绪时,调度程度将正执行的进程转换为就绪状态,让更高优先级的进程执行。 运行状态 -> 阻塞状态:当进程请求某一资源(如外设)的使用和分配或等待某一事件的发生(如I/O操作的完成)时,它就从运行状态转换为阻塞状态。进程以系统调用的形式请求操作系统提供服务,这是一种特殊的、由运行用户态程序调用操作系统内核过程的形式。 阻塞状态 -> 就绪状态:当进程等待的事件到来时,如I/O操作结束或中断结束时,中断处理程序必须把相应进程的状态由阻塞状态转换为就绪状态。

    在操作系统中,一般把进程控制用的程序段称为原语,原语的特点是执行期间不允许中断,它是一个不可分割的基本单位。 进程的创建:允许一个进程创建另一个进程。此时创建者称为父进程,被创建的进程称为子进程。子进程可以继承父进程所拥有的资源。当子进程被撤销时,应将其从父进程那里获得的资源归还给父进程。此外,在撤销父进程时,也必须同时撤销其所有的子进程。 在操作系统中,终端用户登录系统、作业调度、系统提供服务、用户程序的应用请求等都会引起进程的创建。操作系统创建一个新进程的过程如下(创建原语): 为新进程分配一个唯一的进程标识号,并申请一个空白的PCB(PCB是有限的)。若PCB申请失败则创建失败。 为进程分配资源,为新进程的程序和数据、以及用户栈分配必要的内存空间(在PCB中体现)。注意:这里如果资源不足(比如内存空间),并不是创建失败,而是处于”等待状态“,或称为“阻塞状态”,等待的是内存这个资源。 初始化PCB,主要包括初始化标志信息、初始化处理机状态信息和初始化处理机控制信息,以及设置进程的优先级等。 如果进程就绪队列能够接纳新进程,就将新进程插入到就绪队列,等待被调度运行。 进程控制块(PCB)的结构 进程控制块 PCB (Process Control Block): 存放进程的管理和控制信息的数据结构称为进程控制块。它是进程管理和控制的最重要的数据结构,每一个进程均有一个PCB,在创建进程时,建立PCB,伴随进程运行的全过程,直到进程撤消而撤消。 在不同的操作系统中对进程的控制和管理机制不同,PCB中的信息多少也不一样,通常PCB应包含如下一些信息。 1、进程标识符 name:每个进程都必须有一个唯一的标识符,可以是字符串,也可以是一个数字。UNIX系统中就是一个整型数。在进程创建时由系统赋予。 2、进程当前状态 status:说明进程当前所处的状态。为了管理的方便,系统设计时会将相同的状态的进程组成一个队列,如就绪进程队列,等待进程则要根据等待的事件组成多个等待队列,如等待打印机队列、等待磁盘I/O完成队列等等。 3、进程相应的程序和数据地址,以便把PCB与其程序和数据联系起来。 4、进程资源清单。列出所拥有的除CPU外的资源记录,如拥有的I/O设备,打开的文件列表等。 5、进程优先级 priority:进程的优先级反映进程的紧迫程序,通常由用户指定和系统设置。UNIX系统采用用户设置和系统计算相结合的方式确定进程的优先级 。 6、CPU现场保护区 cpustatus:当进程因某种原因不能继续占用CPU时(等待打印机),释放CPU,这时就要将CPU的各种状态信息保护起来,为将来再次得到处理机恢复CPU的各种状态,继续运行。 7、进程同步与通信机制 用于实现进程间互斥、同步和通信所需的信号量等。 8、进程所在队列PCB的链接字   根据进程所处的现行状态,进程相应的PCB参加到不同队列中。PCB链接字指出该进程所在队列中下一个进程PCB的首地址。 9、与进程有关的其他信息。 如进程记账信息,进程占用CPU的时间等。 进程的终止: 根据被终止进程的标识符,检索PCB,从中读出该进程的状态。 若被终止进程处于执行状态,立即终止该进程的执行,将处理机资源分配给其他进程。 若该进程还有子进程,则应将其所有子进程终止。 将该进程所拥有的全部资源,或归还给其父进程或归还给操作系统。 将该PCB从所在队列(链表)中删除。 进程的阻塞和唤醒 由系统自动执行阻塞原语(Block),使自己由运行状态变为阻塞状态。可见,进程的阻塞是进程自身的一种主动行为,也因此只有处于运行态的进程(获得CPU),才可能将其转为阻塞状态 阻塞原语的执行过程是: 找到将要被阻塞进程的标识号对应的PCB。 若该进程为运行状态,则保护其现场,将其状态转为阻塞状态,停止运行。 把该PCB插入到相应事件的等待队列中去。 有关进程(比如,提供数据的进程)调用唤醒原语(Wakeup),将等待该事件的进程唤醒。 唤醒原语的执行过程是: 在该事件的等待队列中找到相应进程的PCB。 将其从等待队列中移出,并置其状态为就绪状态。 把该PCB插入就绪队列中,等待调度程序调度。 进程切换 对于通常的进程,其创建、撤销以及要求由系统设备完成的I/O操作都是利用系统调用而进入内核,再由内核中相应处理程序予以完成的。进程切换同样是在内核的支持下实现的,因此可以说,任何进程都是在操作系统内核的支持下运行的,是与内核紧密相关的。 进程切换是指处理机从一个进程的运行转到另一个进程上运行,这个过程中,进程的运行环境产生了实质性的变化。 进程切换的过程如下: 保存处理机上下文,包括程序计数器和其他寄存器。 更新PCB信息。 把进程的PCB移入相应的队列,如就绪、在某事件阻塞等队列。 选择另一个进程执行,并更新其PCB。 更新内存管理的数据结构。 恢复处理机上下文。 注意,进程切换与处理机模式切换是不同的,模式切换时,处理机逻辑上可能还在同一进程中运行。如果进程因中断或异常进入到核心态运行,执行完后又回到用户态刚被中断的程序运行,则操作系统只需恢复进程进入内核时所保存的CPU现场,无需改变当前进程的环境信息。但若要切换进程,当前运行进程改变了,则当前进程的环境信息也需要改变。 大多数操作系统区分两种类型的系统中断。一种称为中断,另一种称为陷阱。前者与当前正在运行的进程无关的某种类型的外部事件有关,如完成一次IO操作;后者与当前正在运行的进程所产生的错误或者异常条件有关,如非法的文件访问。对于普通中断,控制首先转移给中断处理器,它做一些基本的辅助工作,然后转到与已经发生的特定类型的中断相关的操作系统例程。参见以下例子: 时钟中断:操作系统确定当前正在运行的进程的执行时间是否已经超过了最大允许的时间段(时间片,即进程在被中断前可以执行的最大时间段),如果超过了,进程必须切换到就绪态,调用另一个进程。 IO中断:操作系统确定是否发生了IO活动。如果IO活动是一个或者多个进程正在等待的事件,操作系统就把所有相应的阻塞态进程转换到就绪态,阻塞挂起转到就绪挂起,操作系统必须决定是继续执行当前处于运行态的进程,还是让具有高优先级的就绪态进程抢占这个进程。 内存失效:处理器访问一个虚地址,且此地址单元不在内存中时,操作系统必须从外存中把包含这个引用的内存块(段或页)调入内存中。在发出调入内存块的IO请求之后,操作系统可能会执行一个进程切换,以恢复另一个进程的执行,发生内存失效的进程被置为阻塞态,当想要的块调入内存中时,该进程被置为就绪态。 对于陷阱,操作系统确定错误或者异常条件是否是致命伤。如果是,当前正在运行的进程被转换到退出态,并发生进程切换;如果不是,操作系统的动作取决于错误的种类和操作系统的设计,其行为可以是试图恢复或通知用户,操作系统可能会进行一次进程切换或者继续执行当前正在运行的进程。

    线程与进程 线程最直接的理解就是“轻量级进程”,它是一个基本的CPU执行单元,也是程序执行流的最小单元 1) 调度。线程是独立调度的基本单位,进程是资源拥有的基本单位。在同一进程中,线程的切换不会引起进程切换。在不同进程中进行线程切换,如从一个进程内的线程切换到另一个进程中的线程时,会引起进程切换。 2)拥有资源。不论是传统操作系统还是设有线程的操作系统,进程都是拥有资源的基本单位,而线程不拥有系统资源(也有一点必不可少的资源),但线程可以访问其隶属进程的系统资源。 3)并发性。在引入线程的操作系统中,不仅进程之间可以并发执行,而且多个线程之间也可以并发执行,从而使操作系统具有更好的并发性,提高了系统的吞吐量。 4) 系统开销。由于创建或撤销进程时,系统都要为之分配或回收资源,如内存空间、 I/O设备等,因此操作系统所付出的开销远大于创建或撤销线程时的开销。类似地,在进行进程切换时,涉及当前执行进程CPU环境的保存及新调度到进程CPU环境的设置,而线程切换时只需保存和设置少量寄存器内容,开销很小。此外,由于同一进程内的多个线程共享进程的地址空间,因此,这些线程之间的同步与通信非常容易实现,甚至无需操作系统的干预。 5) 地址空间和其他资源(如打开的文件):进程的地址空间之间互相独立,同一进程的各线程间共享进程的资源,某进程内的线程对于其他进程不可见。 6) 通信方面:进程间通信(IPC)需要进程同步和互斥手段的辅助,以保证数据的一致性,而线程间可以直接读/写进程数据段(如全局变量)来进行通信。 线程的属性: 1)线程是一个轻型实体,它不拥有系统资源,但每个线程都应有一个唯一的标识符和一个线程控制块,线程控制块记录了线程执行的寄存器和栈等现场状态。 2)不同的线程可以执行相同的程序,即同一个服务程序被不同的用户调用时,操作系统为它们创建成不同的线程。 3)同一进程中的各个线程共享该进程所拥有的资源。 4)线程是处理机的独立调度单位,多个线程是可以并发执行的。在单CPU的计算机系统中,各线程可交替地占用CPU;在多CPU的计算机系统中,各线程可同时占用不同的CPU,若各个CPU同时为一个进程内的各线程服务则可缩短进程的处理时间。 5)—个线程被创建后便开始了它的生命周期,直至终止,线程在生命周期内会经历阻塞态、就绪态和运行态等各种状态变化。

    转载请注明原文地址: https://ju.6miu.com/read-200199.html

    最新回复(0)