Spark之训练分类模型练习(2)

    xiaoxiao2021-03-25  8

    上接博文。

    1 改进模型及参数调优

    1.1 数值特征标准化

    使用RowMatrix类计算列的统计量。每一行为某一样本的特征向量

    import org.apache.spark.mllib.linalg.distributed.RowMatrix val vectors = data.map(lp => lp.features) val matrix = new RowMatrix(vectors) val matrixSummary = matrix.computeColumnSummaryStatistics() //每一列的常用统计量 println(matrixSummary.mean) //均值 println(matrixSummary.min) //最小值 println(matrixSummary.max) //最大值 println(matrixSummary.variance)//方差 println(matrixSummary.numNonzeros)//非零的个数

    使用去均值归一化方法:

    (xμ)/sqrt(variance)

    //对数据进行标准化预处理,选择性的去均值操作,和标准方差操作 import org.apache.spark.mllib.feature.StandardScaler val scaler = new StandardScaler(withMean = true, withStd = true).fit(vectors) val scaledData = data.map(lp => LabeledPoint(lp.label, scaler.transform(lp.features))) // 验证逻辑回归算法性能改善情况。NB和DT算法不受数据归一化的影响 val lrModelScaled = LogisticRegressionWithSGD.train(scaledData, numIterations) val lrTotalCorrectScaled = scaledData.map { point => if (lrModelScaled.predict(point.features) == point.label) 1 else 0 }.sum val lrAccuracyScaled = lrTotalCorrectScaled / numData val lrPredictionsVsTrue = scaledData.map { point => (lrModelScaled.predict(point.features), point.label) } val lrMetricsScaled = new BinaryClassificationMetrics(lrPredictionsVsTrue) val lrPr = lrMetricsScaled.areaUnderPR val lrRoc = lrMetricsScaled.areaUnderROC println(f"${lrModelScaled.getClass.getSimpleName}\nAccuracy:${lrAccuracyScaled * 100}%2.4f%%\nArea under PR: ${lrPr * 100.0}%2.4f%%\nArea under ROC: ${lrRoc * 100.0}%2.4f%%")

    ***LogisticRegressionModel Accuracy:62.0419% Area under PR: 72.7254% Area under ROC: 61.9663%*

    1.2 其他特征(增加类别特征向量)

    //加入类别特征 val categories = records.map(r => r(3)).distinct.collect.zipWithIndex.toMap val numCategories = categories.size println(categories) val dataCategories = records.map { r => val trimmed = r.map(_.replaceAll("\"", "")) val label = trimmed(r.size - 1).toInt val categoryIdx = categories(r(3)) //增加类别向量列表 val categoryFeatures = Array.ofDim[Double](numCategories) categoryFeatures(categoryIdx) = 1.0 val otherFeatures = trimmed.slice(4, r.size - 1).map(d => if (d == "?") 0.0 else d.toDouble) val features = categoryFeatures ++ otherFeatures LabeledPoint(label, Vectors.dense(features)) } println(dataCategories.first) // 标准化输出 val scalerCats = new StandardScaler(withMean = true, withStd = true). fit(dataCategories.map(lp => lp.features)) val scaledDataCats = dataCategories.map(lp => LabeledPoint(lp.label, scalerCats.transform(lp.features))) // 再次查看lr算法性能 val lrModelScaledCats = LogisticRegressionWithSGD.train(scaledDataCats, numIterations) val lrTotalCorrectScaledCats = scaledDataCats.map { point => if (lrModelScaledCats.predict(point.features) == point.label) 1 else 0 }.sum val lrAccuracyScaledCats = lrTotalCorrectScaledCats / numData val lrPredictionsVsTrueCats = scaledDataCats.map { point => (lrModelScaledCats.predict(point.features), point.label) } val lrMetricsScaledCats = new BinaryClassificationMetrics(lrPredictionsVsTrueCats) val lrPrCats = lrMetricsScaledCats.areaUnderPR val lrRocCats = lrMetricsScaledCats.areaUnderROC println(f"${lrModelScaledCats.getClass.getSimpleName}\nAccuracy:${lrAccuracyScaledCats * 100}%2.4f%%\nArea under PR: ${lrPrCats * 100.0}%2.4f%%\nArea under ROC: ${lrRocCats * 100.0}%2.4f%%")

    LogisticRegressionModel Accuracy:66.5720% Area under PR: 75.7964% Area under ROC: 66.5483%

    1.3 使用更符合模型的特征

    朴素贝叶斯更适用于类别特征,仅仅使用类别特征对样本进行分类实验:

    // 生成仅有类别属性的特征向量 val dataNB = records.map { r => val trimmed = r.map(_.replaceAll("\"", "")) val label = trimmed(r.size - 1).toInt val categoryIdx = categories(r(3)) val categoryFeatures = Array.ofDim[Double](numCategories) categoryFeatures(categoryIdx) = 1.0 LabeledPoint(label, Vectors.dense(categoryFeatures)) } //验证NB算法的性能 val nbModelCats = NaiveBayes.train(dataNB) val nbTotalCorrectCats = dataNB.map { point => if (nbModelCats.predict(point.features) == point.label) 1 else 0 }.sum val nbAccuracyCats = nbTotalCorrectCats / numData val nbPredictionsVsTrueCats = dataNB.map { point => (nbModelCats.predict(point.features), point.label) } val nbMetricsCats = new BinaryClassificationMetrics(nbPredictionsVsTrueCats) val nbPrCats = nbMetricsCats.areaUnderPR val nbRocCats = nbMetricsCats.areaUnderROC println(f"${nbModelCats.getClass.getSimpleName}\nAccuracy:${nbAccuracyCats * 100}%2.4f%%\nArea under PR: ${nbPrCats * 100.0}%2.4f%%\nArea under ROC: ${nbRocCats * 100.0}%2.4f%%")

    结果: NaiveBayesModel Accuracy: 60.9601% Area under PR: 74.0522% Area under ROC: 60.5138% 从结果看,NB算法有了很大提升,说明数据特征对模型的适应性。

    1.4 模型的参数调优

    已讨论的对模型性能影响因素:特征提取、特征的选择、数据格式和对数据分布的假设 接下来,讨论模型参数对性能的影响。

    1.4.1 线性模型

    转载请注明原文地址: https://ju.6miu.com/read-200244.html

    最新回复(0)