(1)下载VOC2007数据集
提供一个百度云地址:http://pan.baidu.com/s/1mhMKKw4
解压,然后,将该数据集放在py-faster-rcnn\data下,用你的数据集替换VOC2007数据集。(替换Annotations,ImageSets和JPEGImages)
(用你的Annotations,ImagesSets和JPEGImages替换py-faster-rcnn\data\VOCdevkit2007\VOC2007中对应文件夹)
(2)下载ImageNet数据集下预训练得到的模型参数(用来初始化)
提供一个百度云地址:http://pan.baidu.com/s/1hsxx8OW
解压,然后将该文件放在py-faster-rcnn\data下
下面是训练前的一些修改。
1.py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt修改
[plain]
view plain
copy
layer { name: 'data' type: 'Python' top: 'data' top: 'rois' top: 'labels' top: 'bbox_targets' top: 'bbox_inside_weights' top: 'bbox_outside_weights' python_param { module: 'roi_data_layer.layer' layer: 'RoIDataLayer' param_str: "'num_classes': 16" #按训练集类别改,该值为类别数+1 } }
[plain]
view plain
copy
layer { name: "cls_score" type: "InnerProduct" bottom: "fc7" top: "cls_score" param { lr_mult: 1.0 } param { lr_mult: 2.0 } inner_product_param { num_output: 16 #按训练集类别改,该值为类别数+1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } }
[plain]
view plain
copy
layer { name: "bbox_pred" type: "InnerProduct" bottom: "fc7" top: "bbox_pred" param { lr_mult: 1.0 } param { lr_mult: 2.0 } inner_product_param { num_output: 64 #按训练集类别改,该值为(类别数+1)*4 weight_filler { type: "gaussian" std: 0.001 } bias_filler { type: "constant" value: 0 } } }
2.py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_train.pt修改
[plain]
view plain
copy
layer { name: 'input-data' type: 'Python' top: 'data' top: 'im_info' top: 'gt_boxes' python_param { module: 'roi_data_layer.layer' layer: 'RoIDataLayer' param_str: "'num_classes': 16" #按训练集类别改,该值为类别数+1 } }
3.py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/stage2_fast_rcnn_train.pt修改
[plain]
view plain
copy
layer { name: 'data' type: 'Python' top: 'data' top: 'rois' top: 'labels' top: 'bbox_targets' top: 'bbox_inside_weights' top: 'bbox_outside_weights' python_param { module: 'roi_data_layer.layer' layer: 'RoIDataLayer' param_str: "'num_classes': 16" #按训练集类别改,该值为类别数+1 } }
[plain]
view plain
copy
layer { name: "cls_score" type: "InnerProduct" bottom: "fc7" top: "cls_score" param { lr_mult: 1.0 } param { lr_mult: 2.0 } inner_product_param { num_output: 16 #按训练集类别改,该值为类别数+1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } }
[plain]
view plain
copy
layer { name: "bbox_pred" type: "InnerProduct" bottom: "fc7" top: "bbox_pred" param { lr_mult: 1.0 } param { lr_mult: 2.0 } inner_product_param { num_output: 64 #按训练集类别改,该值为(类别数+1)*4 weight_filler { type: "gaussian" std: 0.001 } bias_filler { type: "constant" value: 0 } } }
4.py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/stage2_rpn_train.pt修改
[plain]
view plain
copy
layer { name: 'input-data' type: 'Python' top: 'data' top: 'im_info' top: 'gt_boxes' python_param { module: 'roi_data_layer.layer' layer: 'RoIDataLayer' param_str: "'num_classes': 16" #按训练集类别改,该值为类别数+1 } }
5.py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/faster_rcnn_test.pt修改
[plain]
view plain
copy
layer { name: "cls_score" type: "InnerProduct" bottom: "fc7" top: "cls_score" inner_product_param { num_output: 16 #按训练集类别改,该值为类别数+1 } }
[plain]
view plain
copy
layer { name: "bbox_pred" type: "InnerProduct" bottom: "fc7" top: "bbox_pred" inner_product_param { num_output: 64 #按训练集类别改,该值为(类别数+1)*4 } }
6.py-faster-rcnn/lib/datasets/pascal_voc.py修改
(1)
[plain]
view plain
copy
class pascal_voc(imdb): def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 '你的标签1','你的标签2',你的标签3','你的标签4' )
上面要改的地方是
修改训练集文件夹:
[plain]
view plain
copy
self._data_path = os.path.join(self._devkit_path, 'VOC'+self._year)
用你的数据集直接替换原来VOC2007内的Annotations,ImageSets和JPEGImages即可,以免出现各种错误。
修改标签:
[plain]
view plain
copy
self._classes = ('__background__', # always index 0 '你的标签1','你的标签2','你的标签3','你的标签4' )
修改成你的数据集的标签就行。
(2)
[html]
view plain
copy
cls =
self._class_to_ind[obj.find('name').text.lower().strip()]
这里把标签转成小写,如果你的标签含有大写字母,可能会出现KeyError的错误,所以建议标签用小写字母。
(去掉lower应该也行)
建议训练的标签还是用小写的字母,如果最终需要用大写字母或中文显示标签,可参考:
http://blog.csdn.net/sinat_30071459/article/details/51694037
7.py-faster-rcnn/lib/datasets/imdb.py修改
该文件的append_flipped_images(self)函数修改为:
[plain]
view plain
copy
def append_flipped_images(self): num_images = self.num_images widths = [PIL.Image.open(self.image_path_at(i)).size[0] for i in xrange(num_images)] for i in xrange(num_images): boxes = self.roidb[i]['boxes'].copy() oldx1 = boxes[:, 0].copy() oldx2 = boxes[:, 2].copy() boxes[:, 0] = widths[i] - oldx2 - 1 print boxes[:, 0] boxes[:, 2] = widths[i] - oldx1 - 1 print boxes[:, 0] assert (boxes[:, 2] >= boxes[:, 0]).all() entry = {'boxes' : boxes, 'gt_overlaps' : self.roidb[i]['gt_overlaps'], 'gt_classes' : self.roidb[i]['gt_classes'], 'flipped' : True} self.roidb.append(entry) self._image_index = self._image_index * 2
这里assert (boxes[:, 2] >= boxes[:, 0]).all()可能出现AssertionError,具体解决办法参考:
http://blog.csdn.net/xzzppp/article/details/52036794
!!!为防止与之前的模型搞混,训练前把output文件夹删除(或改个其他名),还要把py-faster-rcnn/data/cache中的文件和
py-faster-rcnn/data/VOCdevkit2007/annotations_cache中的文件删除(如果有的话)。
至于学习率等之类的设置,可在py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt中的solve文件设置,迭代次数可在py-faster-rcnn\tools的train_faster_rcnn_alt_opt.py中修改:
[plain]
view plain
copy
max_iters = [80000, 40000, 80000, 40000]
分别为4个阶段(rpn第1阶段,fast rcnn第1阶段,rpn第2阶段,fast rcnn第2阶段)的迭代次数。可改成你希望的迭代次数。
如果改了这些数值,最好把py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt里对应的solver文件(有4个)也修改,stepsize小于上面修改的数值。
8.开始训练
进入py-faster-rcnn,执行:
[plain]
view plain
copy
./experiments/scripts/faster_rcnn_alt_opt.sh 0 ZF pascal_voc
由于py-faster-rcnn的训练只能用GPU,因此此时运行此命令会出错。。。好的从这里开始请看我的另一篇py-faster-rcnn+CPU训练自己的数据集
这样,就开始训练了。
9.测试
将训练得到的py-faster-rcnn\output\faster_rcnn_alt_opt\***_trainval中ZF的caffemodel拷贝至py-faster-rcnn\data\faster_rcnn_models(如果没有这个文件夹,就新建一个),然后,修改:
py-faster-rcnn\tools\demo.py,主要修改:
[plain]
view plain
copy
CLASSES = ('__background__', '你的标签1', '你的标签2', '你的标签3', '你的标签4')
改成你的数据集标签;
[plain]
view plain
copy
NETS = {'vgg16': ('VGG16', 'VGG16_faster_rcnn_final.caffemodel'), 'zf': ('ZF', 'ZF_faster_rcnn_final.caffemodel')}
上面ZF的caffemodel改成你的caffemodel。
[plain]
view plain
copy
im_names = ['1559.jpg','1564.jpg']
改成你的测试图片。(测试图片放在py-faster-rcnn\data\demo中)
10.结果
在py-faster-rcnn下,
执行:
[plain]
view plain
copy
./tools/demo.py --net zf
或者将默认的模型改为zf:
[html]
view plain
copy
parser.add_argument('--net',
dest=
'demo_net',
help=
'Network to use [vgg16]',
choices=
NETS.keys(),
default=
'vgg16')
修改:
[html]
view plain
copy
default=
'zf'
执行:
[plain]
view plain
copy
./tools/demo.py