LeetCode 207、Course Schedule 题解

    xiaoxiao2021-03-25  64

    拓扑排序

    【题目】

    There are a total of n courses you have to take, labeled from 0 to n - 1.

    Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

    Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

    For example:

    2, [[1,0]]

    There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

    2, [[1,0],[0,1]]

    There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

    Note:

    The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.You may assume that there are no duplicate edges in the input prerequisites

    题解

         本题等价于有向图是否有环,显然使用拓扑排序的思想即可求解。

        拓扑排序的思想为:

      (1)从有向图中选取一个入度为0的顶点,输出或保存;

      (2)从有向图中删去此顶点以及所有以它为起点的边;

       重复上述步骤,直至图空;若图不空,存在环。

        这里需要解释一下入度的概念。一个顶点的度是指与该顶点相关联的边的条数,对于有向图来说,一个顶点的度可细分为入度和出度。一个顶点的入度是指与其关联的各边之中,以其为终点的边数;出度则是相对的概念,指以该顶点为起点的边数。

    代码

    bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) { int nSize = prerequisites.size(); if (nSize == 0) return true; vector<int> nIndegree(numCourses, 0); vector<vector<int>> Graph(numCourses); queue<int> sources; for (int i = 0; i < nSize; i++) { nIndegree[prerequisites[i].first]++; //求入度 Graph[prerequisites[i].second].push_back(prerequisites[i].first); //边 } for (int i = 0; i < numCourses; i++) { if (nIndegree[i] == 0) sources.push(i); } int nTotal = 0; while (!sources.empty()) { int nTmp = sources.front(); sources.pop(); int nEdges = Graph[nTmp].size(); for (int i = 0; i < nEdges; i++) { nIndegree[Graph[nTmp][i]]--; if (nIndegree[Graph[nTmp][i]] == 0) sources.push(Graph[nTmp][i]); } nTotal++; } if (nTotal == numCourses) return true; else return false; }       LeetCode 210、Course Schedule II与本题的思路是一致的,区别只在于本题不需要保存拓扑排序的序列,而LeetCode 210需要。  
    转载请注明原文地址: https://ju.6miu.com/read-32930.html

    最新回复(0)