7.4多元线性回归实例1--python机器学习

    xiaoxiao2021-03-25  93

    原文地址

    参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ

    1. 例子     一家快递公司送货:X1: 运输里程 X2: 运输次数   Y:总运输时间      

    Driving 

    Assignment

    X1=Miles 

    Traveled

    X2=Number of Deliveries

    Y= Travel Time (Hours)

    1

    100

    4

    9.3

    2

    50

    3

    4.8

    3

    100

    4

    8.9

    4

    100

    2

    6.5

    5

    50

    2

    4.2

    6

    80

    2

    6.2

    7

    75

    3

    7.4

    8

    65

    4

    6.0

    9

    90

    3

    7.6

    10

    90

    2

    6.1

    目的,求出b0, b1,.... bp:   y_hat=b 0 +b x 1 +b 2 x 2 + ... +b p x 2. Python代码: from numpy import genfromtxt import numpy as np from sklearn import datasets, linear_model dataPath = r"D:\MaiziEdu\DeepLearningBasics_MachineLearning\Datasets\Delivery.csv" deliveryData = genfromtxt(dataPath, delimiter=',') print "data" print deliveryData X = deliveryData[:, :-1] Y = deliveryData[:, -1] print "X:" print X print "Y: " print Y regr = linear_model.LinearRegression() regr.fit(X, Y) print "coefficients" print regr.coef_ print "intercept: " print regr.intercept_ xPred = [102, 6] yPred = regr.predict(xPred) print "predicted y: " print yPred
    转载请注明原文地址: https://ju.6miu.com/read-33181.html

    最新回复(0)