Description
给定n*n的矩阵,求从起点走到终点走k次的最大路径权的和,每个点能多次走但只能获取1次值
Solution
好气啊数组开错了wa好久,第几次了都
题目和3680相比有改变,那么我们仍然拆点,然后入点和出点连一条容量INF费用0的边,就能保证点能重复走且权值只拿一次
Code
#include <stdio.h>
#include <string.h>
#include <queue>
#define rep(i, st, ed) for (int i = st; i <= ed; i += 1)
#define erg(i, st) for (int i = ls[st]; i; i = e[i].next)
#define fill(x, t) memset(x, t, sizeof(x))
#define INF 0x3f3f3f3f
#define L 505
#define N 100001
#define E 100001
struct edge{
int x, y, w, c, next;}e[E];
int ls[N];
inline void addEdge(
int &cnt,
int x,
int y,
int w,
int c){
cnt +=
1; e[cnt] = (edge){x, y, w, c, ls[x]}; ls[x] = cnt;
cnt +=
1; e[cnt] = (edge){y, x,
0, -c, ls[y]}; ls[y] = cnt;
}
using std::
queue;
int inQueue[N], dis[N], pre[N];
inline int spfa(
int st,
int ed){
queue<int> que;
que.push(st);
rep(i, st, ed){
dis[i] = -INF;
inQueue[i] =
0;
}
dis[st] =
0;
inQueue[st] =
1;
while (!que.empty()){
int now = que.front(); que.pop();
erg(i, now){
if (e[i].w >
0 && dis[now] + e[i].c > dis[e[i].y]){
dis[e[i].y] = dis[now] + e[i].c;
pre[e[i].y] = i;
if (!inQueue[e[i].y]){
inQueue[e[i].y] =
1;
que.push(e[i].y);
}
}
}
inQueue[now] =
0;
}
return dis[ed] != -INF;
}
inline int min(
int x,
int y){
return x<y?x:y;
}
inline int modify(
int ed){
int mn = INF, ret =
0;
for (
int i = ed; pre[i]; i = e[pre[i]].x){
mn = min(mn, e[pre[i]].w);
ret += e[pre[i]].c;
}
for (
int i = ed; pre[i]; i = e[pre[i]].x){
e[pre[i]].w -= mn;
e[pre[i] ^
1].w += mn;
}
return ret * mn;
}
inline int mcf(
int st,
int ed){
int tot =
0;
while (spfa(st, ed)){
tot += modify(ed);
}
return tot;
}
int rc[L][L];
int main(
void){
int n, k;
while (
scanf(
"%d%d", &n, &k) != EOF){
rep(i,
1, n){
rep(j,
1, n){
scanf(
"%d", &rc[i][j]);
}
}
fill(ls,
0);
int edgeCnt =
1;
int lim = n * n;
int st =
0, ed = lim + lim +
1;
rep(i,
1, n){
rep(j,
1, n){
int x = i * n - n + j;
if (i < n){
int y = i * n + j;
addEdge(edgeCnt, x + lim, y, INF,
0);
}
if (j < n){
int y = i * n - n + j +
1;
addEdge(edgeCnt, x + lim, y, INF,
0);
}
addEdge(edgeCnt, x, x + lim,
1, rc[i][j]);
addEdge(edgeCnt, x, x + lim, INF,
0);
}
}
addEdge(edgeCnt, st,
1, k,
0);
addEdge(edgeCnt, lim + lim, ed, k,
0);
int ans = mcf(st, ed);
printf(
"%d\n", ans);
}
return 0;
}
转载请注明原文地址: https://ju.6miu.com/read-33435.html