学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016
需要了解强化学习的数学符号,先看看这里:
强化学习读书笔记 - 00 - 术语和数学符号近似控制方法(Control Methods)是求策略的行动状态价值\(q_{\pi}(s, a)\)的近似值\(\hat{q}(s, a, \theta)\)。
Input: a differentiable function \(\hat{q} : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^n \to \mathbb{R}\)
Initialize value-function weights \(\theta \in \mathbb{R}^n\) arbitrarily (e.g., \(\theta = 0\)) Repeat (for each episode): $S, A \gets \(initial state and action of episode (e.g., "\)\epsilon$-greedy) Repeat (for each step of episode): Take action \(A\), observe \(R, S'\) If \(S'\) is terminal: \(\theta \gets \theta + \alpha [R - \hat{q}(S, A, \theta)] \nabla \hat{q}(S, A, \theta)\) Go to next episode Choose \(A'\) as a function of \(\hat{q}(S', \dot \ , \theta)\) (e.g., \(\epsilon\)-greedy) \(\theta \gets \theta + \alpha [R + \gamma \hat{q}(S', A', \theta) - \hat{q}(S, A, \theta)] \nabla \hat{q}(S, A, \theta)\) \(S \gets S'\) \(A \gets A'\)
请看原书,不做拗述。
由于打折率(\(\gamma\), the discounting rate)在近似计算中存在一些问题(说是下一章说明问题是什么)。 因此,在连续性任务中引进了平均奖赏(Average Reward)\(\eta(\pi)\): \[ \begin{align} \eta(\pi) & \doteq \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}{T} \mathbb{E} [R_t | A_{0:t-1} \sim \pi] \\ & = \lim_{t \to \infty} \mathbb{E} [R_t | A_{0:t-1} \sim \pi] \\ & = \sum_s d_{\pi}(s) \sum_a \pi(a|s) \sum_{s',r} p(s,r'|s,a)r \end{align} \]
目标回报(= 原奖赏 - 平均奖赏) \[ G_t \doteq R_{t+1} - \eta(\pi) + R_{t+2} - \eta(\pi) + \cdots \]
策略价值 \[ v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{r,s'} p(s',r|s,a)[r - \eta(\pi) + v_{\pi}(s')] \\ q_{\pi}(s,a) = \sum_{r,s'} p(s',r|s,a)[r - \eta(\pi) + \sum_{a'} \pi(a'|s') q_{\pi}(s',a')] \\ \]
策略最优价值 \[ v_{*}(s) = \underset{a}{max} \sum_{r,s'} p(s',r|s,a)[r - \eta(\pi) + v_{*}(s')] \\ q_{*}(s,a) = \sum_{r,s'} p(s',r|s,a)[r - \eta(\pi) + \underset{a'}{max} \ q_{*}(s',a')] \\ \]
时序差分误差 \[ \delta_t \doteq R_{t+1} - \bar{R} + \hat{v}(S_{t+1},\theta) - \hat{v}(S_{t},\theta) \\ \delta_t \doteq R_{t+1} - \bar{R} + \hat{q}(S_{t+1},A_t,\theta) - \hat{q}(S_{t},A_t,\theta) \\ where \\ \bar{R} \text{ - is an estimate of the average reward } \eta(\pi) \]
半梯度递减Sarsa的平均奖赏版 \[ \theta_{t+1} \doteq \theta_t + \alpha \delta_t \nabla \hat{q}(S_{t},A_t,\theta) \]
Input: a differentiable function \(\hat{q} : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^n \to \mathbb{R}\) Parameters: step sizes \(\alpha, \beta > 0\)
Initialize value-function weights \(\theta \in \mathbb{R}^n\) arbitrarily (e.g., \(\theta = 0\)) Initialize average reward estimate \(\bar{R}\) arbitrarily (e.g., \(\bar{R} = 0\)) Initialize state \(S\), and action \(A\)
Repeat (for each step): Take action \(A\), observe \(R, S'\) Choose \(A'\) as a function of \(\hat{q}(S', \dot \ , \theta)\) (e.g., \(\epsilon\)-greedy) \(\delta \gets R - \bar{R} + \hat{q}(S', A', \theta) - \hat{q}(S, A, \theta)\) \(\bar{R} \gets \bar{R} + \beta \delta\) \(\theta \gets \theta + \alpha \delta \nabla \hat{q}(S, A, \theta)\) \(S \gets S'\) \(A \gets A'\)
请看原书,不做拗述。