Andrew Ng机器学习week2(Linear Regression)编程习题

    xiaoxiao2021-03-25  51

    Andrew Ng机器学习week2(Linear Regression)编程习题

    1、Warm-up Exercise

    function A = warmUpExercise() %WARMUPEXERCISE Example function in octave % A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix A = []; % ============= YOUR CODE HERE ============== % Instructions: Return the 5x5 identity matrix % In octave, we return values by defining which variables % represent the return values (at the top of the file) % and then set them accordingly. A = eye(5); % =========================================== end

    2、Computing Cost(for One Variable)

    function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUTECOST(X, y, theta) computes the cost of using theta as the % parameter for linear regression to fit the data points in X and y % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta % You should set J to the cost. J = sum((X * theta - y) .^ 2) / (2 * m); % ========================================================================= end

    3、Gradient Descent(for One Variable)

    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters) %GRADIENTDESCENT Performs gradient descent to learn theta % theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by % taking num_iters gradient steps with learning rate alpha % Initialize some useful values m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ====================== % Instructions: Perform a single gradient step on the parameter vector % theta. % % Hint: While debugging, it can be useful to print out the values % of the cost function (computeCost) and gradient here. % theta = theta - alpha * (X' * (X * theta - y)) / m; % ============================================================ % Save the cost J in every iteration J_history(iter) = computeCost(X, y, theta); endfor end

    4、Feature Normalization

    function [X_norm, mu, sigma] = featureNormalize(X)
    转载请注明原文地址: https://ju.6miu.com/read-35759.html

    最新回复(0)