以下代码是基于python3.5.0编写的
import pandas
food_info = pandas.read_csv(
"food_info.csv")
# ---------------------特定列加减乘除-------------------------
print(food_info[
"Iron_(mg)"])
div_1000 = food_info[
"Iron_(mg)"] /
1000
add_100 = food_info[
"Iron_(mg)"] +
100
sub_100 = food_info[
"Iron_(mg)"] -
100
mult_2 = food_info[
"Iron_(mg)"]*
2
# ---------------------某两列相乘---------------------------
water_energy = food_info[
"Water_(g)"] * food_info[
"Energ_Kcal"]
# ----------------------把某一列除1000,再添加新列----------------------------
iron_grams = food_info[
"Iron_(mg)"] /
1000
food_info[
"Iron_(g)"] = iron_grams
#-------------------Score=2×(Protein_(g))−0.75×(Lipid_Tot_(g))--------------
weighted_protein = food_info[
"Protein_(g)"] *
2
weighted_fat = -
0.75 * food_info[
"Lipid_Tot_(g)"]
initial_rating = weighted_protein + weighted_fat
#----------------------------数据归一化-----------------------------------
max_calories = food_info[
"Energ_Kcal"].max()
#找列最大值
normalized_calories = food_info[
"Energ_Kcal"] / max_calories
normalized_protein = food_info[
"Protein_(g)"] / food_info[
"Protein_(g)"].max()
normalized_fat = food_info[
"Lipid_Tot_(g)"] / food_info[
"Lipid_Tot_(g)"].max()
food_info[
"Normalized_Protein"] = normalized_protein
food_info[
"Normalized_Fat"] = normalized_fat
# -------------------------------排序----------------------------------
food_info.sort_values(
"Sodium_(mg)", inplace=
True)
#升序,inplace=True表示不从建DataFrame
print(food_info[
"Sodium_(mg)"])
food_info.sort_values(
"Sodium_(mg)", inplace=
True, ascending=
False)
#降序,ascending=False表示降序
print(food_info[
"Sodium_(mg)"])
转载请注明原文地址: https://ju.6miu.com/read-36189.html