TensorFlow学习笔记(二)---MNIST代码分析

    xiaoxiao2021-03-25  55

    TensorFlow学习笔记(二)---MNIST代码分析

    1、mnist_softmax.py全部 代码如下:

    """A very simple MNIST classifier. See extensive documentation at http://tensorflow.org/tutorials/mnist/beginners/index.md """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse # Import data from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf FLAGS = None def main(_):   mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)   # Create the model   x = tf.placeholder(tf.float32, [None, 784])   W = tf.Variable(tf.zeros([784, 10]))   b = tf.Variable(tf.zeros([10]))   y = tf.matmul(x, W) + b   # Define loss and optimizer   y_ = tf.placeholder(tf.float32, [None, 10])   # The raw formulation of cross-entropy,   #   #   tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),   #                                 reduction_indices=[1]))   #   # can be numerically unstable.   #   # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw   # outputs of 'y', and then average across the batch.   cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_))   train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)   sess = tf.InteractiveSession()   # Train   tf.initialize_all_variables().run()   for _ in range(1000):     batch_xs, batch_ys = mnist.train.next_batch(100)     sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})   # Test trained model   correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))   accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))   print(sess.run(accuracy, feed_dict={x: mnist.test.images,                                       y_: mnist.test.labels})) if __name__ == '__main__':   parser = argparse.ArgumentParser()   parser.add_argument('--data_dir', type=str, default='/tmp/data',                       help='Directory for storing data')   FLAGS = parser.parse_args()   tf.app.run()

    2、mnist_with_summaries.py全部代码如下:

    """A simple MNIST classifier which displays summaries in TensorBoard.  This is an unimpressive MNIST model, but it is a good example of using tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of naming summary tags so that they are grouped meaningfully in TensorBoard. It demonstrates the functionality of every TensorBoard dashboard. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data FLAGS = None def train():   # Import data   mnist = input_data.read_data_sets(FLAGS.data_dir,                                     one_hot=True,                                     fake_data=FLAGS.fake_data)   sess = tf.InteractiveSession()   # Create a multilayer model.   # Input placeholders   with tf.name_scope('input'):     x = tf.placeholder(tf.float32, [None, 784], name='x-input')     y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')   with tf.name_scope('input_reshape'):     image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])     tf.image_summary('input', image_shaped_input, 10)   # We can't initialize these variables to 0 - the network will get stuck.   def weight_variable(shape):     """Create a weight variable with appropriate initialization."""     initial = tf.truncated_normal(shape, stddev=0.1)     return tf.Variable(initial)   def bias_variable(shape):     """Create a bias variable with appropriate initialization."""     initial = tf.constant(0.1, shape=shape)     return tf.Variable(initial)   def variable_summaries(var, name):     """Attach a lot of summaries to a Tensor."""     with tf.name_scope('summaries'):       mean = tf.reduce_mean(var)       tf.scalar_summary('mean/' + name, mean)       with tf.name_scope('stddev'):         stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))       tf.scalar_summary('stddev/' + name, stddev)       tf.scalar_summary('max/' + name, tf.reduce_max(var))       tf.scalar_summary('min/' + name, tf.reduce_min(var))       tf.histogram_summary(name, var)   def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):     """Reusable code for making a simple neural net layer.     It does a matrix multiply, bias add, and then uses relu to nonlinearize.     It also sets up name scoping so that the resultant graph is easy to read,     and adds a number of summary ops.     """     # Adding a name scope ensures logical grouping of the layers in the graph.     with tf.name_scope(layer_name):       # This Variable will hold the state of the weights for the layer       with tf.name_scope('weights'):         weights = weight_variable([input_dim, output_dim])         variable_summaries(weights, layer_name + '/weights')       with tf.name_scope('biases'):         biases = bias_variable([output_dim])         variable_summaries(biases, layer_name + '/biases')       with tf.name_scope('Wx_plus_b'):         preactivate = tf.matmul(input_tensor, weights) + biases         tf.histogram_summary(layer_name + '/pre_activations', preactivate)       activations = act(preactivate, name='activation')       tf.histogram_summary(layer_name + '/activations', activations)       return activations   hidden1 = nn_layer(x, 784, 500, 'layer1')   with tf.name_scope('dropout'):     keep_prob = tf.placeholder(tf.float32)     tf.scalar_summary('dropout_keep_probability', keep_prob)     dropped = tf.nn.dropout(hidden1, keep_prob)   # Do not apply softmax activation yet, see below.   y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)   with tf.name_scope('cross_entropy'):     # The raw formulation of cross-entropy,     #     # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),     #                               reduction_indices=[1]))     #     # can be numerically unstable.     #     # So here we use tf.nn.softmax_cross_entropy_with_logits on the     # raw outputs of the nn_layer above, and then average across     # the batch.     diff = tf.nn.softmax_cross_entropy_with_logits(y, y_)     with tf.name_scope('total'):       cross_entropy = tf.reduce_mean(diff)     tf.scalar_summary('cross entropy', cross_entropy)   with tf.name_scope('train'):     train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(         cross_entropy)   with tf.name_scope('accuracy'):     with tf.name_scope('correct_prediction'):       correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))     with tf.name_scope('accuracy'):       accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))     tf.scalar_summary('accuracy', accuracy)   # Merge all the summaries and write them out to /tmp/mnist_logs (by default)   merged = tf.merge_all_summaries()   train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train',                                         sess.graph)   test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test')   tf.initialize_all_variables().run()   # Train the model, and also write summaries.   # Every 10th step, measure test-set accuracy, and write test summaries   # All other steps, run train_step on training data, & add training summaries   def feed_dict(train):     """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""     if train or FLAGS.fake_data:       xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)       k = FLAGS.dropout     else:       xs, ys = mnist.test.images, mnist.test.labels       k = 1.0     return {x: xs, y_: ys, keep_prob: k}   for i in range(FLAGS.max_steps):     if i % 10 == 0:  # Record summaries and test-set accuracy       summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))       test_writer.add_summary(summary, i)       print('Accuracy at step %s: %s' % (i, acc))     else:  # Record train set summaries, and train       if i % 100 == 99:  # Record execution stats         run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)         run_metadata = tf.RunMetadata()         summary, _ = sess.run([merged, train_step],                               feed_dict=feed_dict(True),                               options=run_options,                               run_metadata=run_metadata)         train_writer.add_run_metadata(run_metadata, 'stepd' % i)         train_writer.add_summary(summary, i)         print('Adding run metadata for', i)       else:  # Record a summary         summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))         train_writer.add_summary(summary, i)   train_writer.close()   test_writer.close() def main(_):   if tf.gfile.Exists(FLAGS.summaries_dir):     tf.gfile.DeleteRecursively(FLAGS.summaries_dir)   tf.gfile.MakeDirs(FLAGS.summaries_dir)   train() if __name__ == '__main__':   parser = argparse.ArgumentParser()   parser.add_argument('--fake_data', nargs='?', const=True, type=bool,                       default=False,                       help='If true, uses fake data for unit testing.')   parser.add_argument('--max_steps', type=int, default=1000,                       help='Number of steps to run trainer.')   parser.add_argument('--learning_rate', type=float, default=0.001,                       help='Initial learning rate')   parser.add_argument('--dropout', type=float, default=0.9,                       help='Keep probability for training dropout.')   parser.add_argument('--data_dir', type=str, default='/tmp/data',                       help='Directory for storing data')   parser.add_argument('--summaries_dir', type=str, default='/tmp/mnist_logs',                       help='Summaries directory')   FLAGS = parser.parse_args()   tf.app.run()

    (待续)

    转载请注明原文地址: https://ju.6miu.com/read-36638.html

    最新回复(0)