import pandas
as pd
food_info = pd.read_csv(
"D:\\test\\food_info.csv")
print(food_info.head(
2))
NDB_No Shrt_Desc Water_(g) Energ_Kcal Protein_(g) \
0 1001 BUTTER WITH SALT 15.87 717 0.85
1 1002 BUTTER WHIPPED WITH SALT 15.87 717 0.85
Lipid_Tot_(g) Ash_(g) Carbohydrt_(g) Fiber_TD_(g) Sugar_Tot_(g) \
0 81.11 2.11 0.06 0.0 0.06
1 81.11 2.11 0.06 0.0 0.06
... Vit_A_IU Vit_A_RAE Vit_E_(mg) Vit_D_mcg Vit_D_IU \
0 ... 2499.0 684.0 2.32 1.5 60.0
1 ... 2499.0 684.0 2.32 1.5 60.0
Vit_K_(mcg) FA_Sat_(g) FA_Mono_(g) FA_Poly_(g) Cholestrl_(mg)
0 7.0 51.368 21.021 3.043 215.0
1 7.0 50.489 23.426 3.012 219.0
[2 rows x 36 columns]
w_g = food_info[
"Water_(g)"]
w_mg = w_g*
1000
food_info[
"Water_(mg)"] = w_mg
print (w_g.head(
3))
print (w_mg.head(
3))
print (food_info[
"Water_(mg)"].head(
3))
0 15.87
1 15.87
2 0.24
Name: Water_(g), dtype: float64
0 15870.0
1 15870.0
2 240.0
Name: Water_(g), dtype: float64
0 15870.0
1 15870.0
2 240.0
Name: Water_(mg), dtype: float64
w_mg = food_info[
"Water_(g)"]*food_info[
"Vit_E_(mg)"]
print (w_mg.head(
3))
0 36.8184
1 36.8184
2 0.6720
dtype: float64
w_mg = w_mg/w_mg.max()
print (w_mg.head(
3))
0 0.1587
1 0.1587
2 0.0024
Name: Water_(g), dtype: float64
test = food_info[
"FA_Poly_(g)"]
print (test.head(
3))
food_info.sort_values(
"FA_Poly_(g)",inplace=
True)
test = food_info[
"FA_Poly_(g)"]
print (test.head(
3))
701 22.541
3634 0.090
4492 1.367
Name: FA_Poly_(g), dtype: float64
4348 0.0
4243 0.0
6154 0.0
Name: FA_Poly_(g), dtype: float64
food_info.sort_values(
"FA_Poly_(g)",inplace=
True,ascending=
False)
test = food_info[
"FA_Poly_(g)"]
print (test.head(
3))
656 74.623
662 69.900
8431 67.849
Name: FA_Poly_(g), dtype: float64
转载请注明原文地址: https://ju.6miu.com/read-36675.html