Spark常用函数讲解之键值RDD转换

    xiaoxiao2021-03-25  90

    摘要:

    RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集 RDD有两种操作算子:

            Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住       了数据集的逻辑操作          Ation(执行):触发Spark作业的运行,真正触发转换算子的计算   本系列主要讲解Spark中常用的函数操作:          1.RDD基本转换          2.键-值RDD转换          3.Action操作篇   本节所讲函数 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.sortByKey 8.cogroup 9.join 10.LeftOutJoin 11.RightOutJoin   1.mapValus(fun):对[K,V]型数据中的V值map操作 (例1):对每个的的年龄加2 1 2 3 4 5 6 7 8 9 10 object MapValues {    def main(args: Array[String]) {      val conf =  new  SparkConf().setMaster( "local" ).setAppName( "map" )      val sc =  new  SparkContext(conf)      val list = List(( "mobin" , 22 ),( "kpop" , 20 ),( "lufei" , 23 ))      val rdd = sc.parallelize(list)      val mapValuesRDD = rdd.mapValues(_+ 2 )      mapValuesRDD.foreach(println)    } } 输出: (mobin,24) (kpop,22) (lufei,25) (RDD依赖图:红色块表示一个RDD区,黑色块表示该分区集合,下同)     2.flatMapValues(fun):对[K,V]型数据中的V值flatmap操作 (例2): 1 2 3 4 //省略<br>val list = List(("mobin",22),("kpop",20),("lufei",23)) val rdd = sc.parallelize(list) val mapValuesRDD = rdd.flatMapValues(x => Seq(x, "male" )) mapValuesRDD.foreach(println) 输出: (mobin,22) (mobin,male) (kpop,20) (kpop,male) (lufei,23) (lufei,male) 如果是mapValues会输出: (mobin,List(22, male)) (kpop,List(20, male)) (lufei,List(23, male)) (RDD依赖图)     3.comineByKey(createCombiner,mergeValue,mergeCombiners,partitioner,mapSideCombine)      comineByKey(createCombiner,mergeValue,mergeCombiners,numPartitions)      comineByKey(createCombiner,mergeValue,mergeCombiners)   createCombiner:在第一次遇到Key时创建组合器函数,将RDD数据集中的V类型值转换C类型值(V => C), 如例3: mergeValue合并值函数,再次遇到相同的Key时,将createCombiner道理的C类型值与这次传入的V类型值合并成一个C类型值(C,V)=>C, 如例3: mergeCombiners:合并组合器函数,将C类型值两两合并成一个C类型值 如例3:   partitioner:使用已有的或自定义的分区函数,默认是HashPartitioner   mapSideCombine:是否在map端进行Combine操作,默认为true   注意前三个函数的参数类型要对应;第一次遇到Key时调用createCombiner,再次遇到相同的Key时调用mergeValue合并值   (例3):统计男性和女生的个数,并以(性别,(名字,名字....),个数)的形式输出 1 2 3 4 5 6 7 8 9 10 11 12 13 14 object CombineByKey {    def main(args: Array[String]) {      val conf =  new  SparkConf().setMaster( "local" ).setAppName( "combinByKey" )      val sc =  new  SparkContext(conf)      val people = List(( "male" ,  "Mobin" ), ( "male" ,  "Kpop" ), ( "female" ,  "Lucy" ), ( "male" ,  "Lufei" ), ( "female" ,  "Amy" ))      val rdd = sc.parallelize(people)      val combinByKeyRDD = rdd.combineByKey(        (x: String) => (List(x),  1 ),        (peo: (List[String], Int), x : String) => (x :: peo._1, peo._2 +  1 ),        (sex1: (List[String], Int), sex2: (List[String], Int)) => (sex1._1 ::: sex2._1, sex1._2 + sex2._2))      combinByKeyRDD.foreach(println)      sc.stop()    } } 输出: (male,(List(Lufei, Kpop, Mobin),3)) (female,(List(Amy, Lucy),2)) 过程分解: Partition1: K="male" --> ("male","Mobin") --> createCombiner("Mobin") => peo1 = ( List("Mobin") , 1 ) K="male" --> ("male","Kpop") --> mergeValue(peo1,"Kpop") => peo2 = ( "Kpop" :: peo1_1 , 1 + 1 ) //Key相同调用mergeValue函数对值进行合并 K="female" --> ("female","Lucy") --> createCombiner("Lucy") => peo3 = ( List("Lucy") , 1 ) Partition2: K="male" --> ("male","Lufei") --> createCombiner("Lufei") => peo4 = ( List("Lufei") , 1 ) K="female" --> ("female","Amy") --> createCombiner("Amy") => peo5 = ( List("Amy") , 1 ) Merger Partition: K="male" --> mergeCombiners(peo2,peo4) => (List(Lufei,Kpop,Mobin)) K="female" --> mergeCombiners(peo3,peo5) => (List(Amy,Lucy)) (RDD依赖图)   4.foldByKey(zeroValue)(func)     foldByKey(zeroValue,partitioner)(func)     foldByKey(zeroValue,numPartitiones)(func)   foldByKey函数是通过调用CombineByKey函数实现的   zeroVale:对V进行初始化,实际上是通过CombineByKey的createCombiner实现的  V =>  (zeroValue,V),再通过func函数映射成新的值,即func(zeroValue,V),如例4可看作对每个V先进行  V=> 2 + V     func: Value将通过func函数按Key值进行合并(实际上是通过CombineByKey的mergeValue,mergeCombiners函数实现的,只不过在这里,这两个函数是相同的) 例4: 1 2 3 4 5 //省略      val people = List(( "Mobin" ,  2 ), ( "Mobin" ,  1 ), ( "Lucy" ,  2 ), ( "Amy" ,  1 ), ( "Lucy" ,  3 ))      val rdd = sc.parallelize(people)      val foldByKeyRDD = rdd.foldByKey( 2 )(_+_)      foldByKeyRDD.foreach(println) 输出: (Amy,2) (Mobin,4) (Lucy,6) 先对每个V都加2,再对相同Key的value值相加。     5.reduceByKey(func,numPartitions):按Key进行分组,使用给定的func函数聚合value值, numPartitions设置分区数,提高作业并行度 例5 1 2 3 4 5 6 //省略 val arr = List(( "A" , 3 ),( "A" , 2 ),( "B" , 1 ),( "B" , 3 )) val rdd = sc.parallelize(arr) val reduceByKeyRDD = rdd.reduceByKey(_ +_) reduceByKeyRDD.foreach(println) sc.stop 输出: (A,5) (A,4) (RDD依赖图)   6.groupByKey(numPartitions):按Key进行分组,返回[K,Iterable[V]],numPartitions设置分区数,提高作业并行度 例6: 1 2 3 4 5 6 //省略 val arr = List(( "A" , 1 ),( "B" , 2 ),( "A" , 2 ),( "B" , 3 )) val rdd = sc.parallelize(arr) val groupByKeyRDD = rdd.groupByKey() groupByKeyRDD.foreach(println) sc.stop 输出: (B,CompactBuffer(2, 3)) (A,CompactBuffer(1, 2))   以上foldByKey,reduceByKey,groupByKey函数最终都是通过调用combineByKey函数实现的   7.sortByKey(accending,numPartitions):返回以Key排序的(K,V)键值对组成的RDD,accending为true时表示升序,为false时表示降序,numPartitions设置分区数,提高作业并行度 例7: 1 2 3 4 5 6 //省略sc val arr = List(( "A" , 1 ),( "B" , 2 ),( "A" , 2 ),( "B" , 3 )) val rdd = sc.parallelize(arr) val sortByKeyRDD = rdd.sortByKey() sortByKeyRDD.foreach(println) sc.stop 输出: (A,1) (A,2) (B,2) (B,3)   8.cogroup(otherDataSet,numPartitions):对两个RDD(如:(K,V)和(K,W))相同Key的元素先分别做聚合,最后返回(K,Iterator<V>,Iterator<W>)形式的RDD,numPartitions设置分区数,提高作业并行度 例8: 1 2 3 4 5 6 7 8 //省略 val arr = List(( "A" ,  1 ), ( "B" ,  2 ), ( "A" ,  2 ), ( "B" ,  3 )) val arr1 = List(( "A" ,  "A1" ), ( "B" ,  "B1" ), ( "A" ,  "A2" ), ( "B" ,  "B2" )) val rdd1 = sc.parallelize(arr,  3 ) val rdd2 = sc.parallelize(arr1,  3 ) val groupByKeyRDD = rdd1.cogroup(rdd2) groupByKeyRDD.foreach(println) sc.stop 输出: (B,(CompactBuffer(2, 3),CompactBuffer(B1, B2))) (A,(CompactBuffer(1, 2),CompactBuffer(A1, A2))) (RDD依赖图)     9.join(otherDataSet,numPartitions):对两个RDD先进行cogroup操作形成新的RDD,再对每个Key下的元素进行笛卡尔积,numPartitions设置分区数,提高作业并行度 例9 1 2 3 4 5 6 7 //省略 val arr = List(( "A" ,  1 ), ( "B" ,  2 ), ( "A" ,  2 ), ( "B" ,  3 )) val arr1 = List(( "A" ,  "A1" ), ( "B" ,  "B1" ), ( "A" ,  "A2" ), ( "B" ,  "B2" )) val rdd = sc.parallelize(arr,  3 ) val rdd1 = sc.parallelize(arr1,  3 ) val groupByKeyRDD = rdd.join(rdd1) groupByKeyRDD.foreach(println) 输出: (B,(2,B1)) (B,(2,B2)) (B,(3,B1)) (B,(3,B2)) (A,(1,A1)) (A,(1,A2)) (A,(2,A1)) (A,(2,A2) (RDD依赖图)     10.LeftOutJoin(otherDataSet,numPartitions):左外连接,包含左RDD的所有数据,如果右边没有与之匹配的用None表示,numPartitions设置分区数,提高作业并行度 例10: 1 2 3 4 5 6 7 8 //省略 val arr = List(( "A" ,  1 ), ( "B" ,  2 ), ( "A" ,  2 ), ( "B" ,  3 ),( "C" , 1 )) val arr1 = List(( "A" ,  "A1" ), ( "B" ,  "B1" ), ( "A" ,  "A2" ), ( "B" ,  "B2" )) val rdd = sc.parallelize(arr,  3 ) val rdd1 = sc.parallelize(arr1,  3 ) val leftOutJoinRDD = rdd.leftOuterJoin(rdd1) leftOutJoinRDD .foreach(println) sc.stop 输出: (B,(2,Some(B1))) (B,(2,Some(B2))) (B,(3,Some(B1))) (B,(3,Some(B2))) (C,(1,None)) (A,(1,Some(A1))) (A,(1,Some(A2))) (A,(2,Some(A1))) (A,(2,Some(A2)))   11.RightOutJoin(otherDataSet, numPartitions):右外连接,包含右RDD的所有数据,如果左边没有与之匹配的用None表示,numPartitions设置分区数,提高作业并行度 例11: 1 2 3 4 5 6 7 8 //省略 val arr = List(( "A" ,  1 ), ( "B" ,  2 ), ( "A" ,  2 ), ( "B" ,  3 )) val arr1 = List(( "A" ,  "A1" ), ( "B" ,  "B1" ), ( "A" ,  "A2" ), ( "B" ,  "B2" ),( "C" , "C1" )) val rdd = sc.parallelize(arr,  3 ) val rdd1 = sc.parallelize(arr1,  3 ) val rightOutJoinRDD = rdd.rightOuterJoin(rdd1) rightOutJoinRDD.foreach(println) sc.stop 输出: (B,(Some(2),B1)) (B,(Some(2),B2)) (B,(Some(3),B1)) (B,(Some(3),B2)) (C,(None,C1)) (A,(Some(1),A1)) (A,(Some(1),A2)) (A,(Some(2),A1)) (A,(Some(2),A2))
    转载请注明原文地址: https://ju.6miu.com/read-36820.html

    最新回复(0)