import java.security.InvalidKeyException;
import java.util.*;
import java.io.*;
// Brandon Senter & Thomas Le
// CS 457: Information Security
// Xunhua Wang; 09.27.2015
public class AES_NEW {
public static String correctKey = "";
public static void main(String[] args) throws Exception {
long startTime = System.currentTimeMillis();
// Scanner in = new Scanner(System.in);
String fileName = "Le_Senter.txt";
File out = new File(fileName);
if (out.exists() == false) {
out.createNewFile();
}
// System.out.println("Where to start?");
// int start = in.nextInt();
//
// System.out.println("Where to end?");
// int end = in.nextInt();
//
// in.close();
//
// System.out.println("Starting AES_Decrpytion.java");
decrypt(Integer.parseInt(args[0]), Integer.parseInt(args[1]));
long endTime = System.currentTimeMillis();
long totalTime = endTime - startTime;
PrintWriter writer = new PrintWriter(fileName, "UTF-8");
writer.println("Correct Key: " + correctKey);
writer.println("Total runtime (ms): " + totalTime);
writer.close();
// System.out.println("Done.");
}
public static void decrypt(int start, int end) throws InvalidKeyException {
byte[] potentialKey = new byte[16];
potentialKey[15] = 0x03;
for (int i = 5; i <= 14; i++)
potentialKey[i] = 0x00;
for (int i = start; i <= end; i++) {
potentialKey[0] = (byte) i;
for (int j = 0; j <= 255; j++) {
potentialKey[1] = (byte) j;
for (int k = 0; k <= 255; k++) {
potentialKey[2] = (byte) k;
for (int l = 0; l <= 255; l++) {
potentialKey[3] = (byte) l;
for (int m = 6; m <= 254; m += 8) {
potentialKey[4] = (byte) m;
// for (byte ki : potentialKey) System.out.print (String.format("X", ki & 0xff));
// System.out.println ("");
boolean isCorrect = testKey(potentialKey);
if (isCorrect) {
correctKey = potentialKey.toString();
return;
}
} // m-loop
} // l-loop
} // k-loop
} // j-loop
} // i-loop
} // decrypt()
public static boolean testKey(byte[] inKey) throws InvalidKeyException {
String IV_string = "5BF16CF65F7D2E547AAF6522342C30D8";
String C1_string = "E84811608B52001CDD9FC48334433B6F";
String C2_string = "C87C0B94F6A7747383881E18A6518DDF";
String C3_string = "3E64B928FA5EFC67275D77D18F505335";
String C4_string = "202F8CD7D8984917681CB1686D3239FB";
byte[] iv = hexStringToByteArray(IV_string);
byte[] c1 = hexStringToByteArray(C1_string);
byte[] c2 = hexStringToByteArray(C2_string);
byte[] c3 = hexStringToByteArray(C3_string);
byte[] c4 = hexStringToByteArray(C4_string);
Object roundKeys = null;
roundKeys = Rijndael_Algorithm.makeKey(Rijndael_Algorithm.DECRYPT_MODE, inKey);
byte[] returnArray = Rijndael_Algorithm.blockDecrypt2(c1, 0, roundKeys);
if (keyCheck(iv, returnArray)) {
byte[] returnArray2 = Rijndael_Algorithm.blockDecrypt2(c2, 0, roundKeys);
if (keyCheck(returnArray, returnArray2)) {
byte[] returnArray3 = Rijndael_Algorithm.blockDecrypt2(c3, 0, roundKeys);
if (keyCheck(returnArray2, returnArray3)) {
byte[] returnArray4 = Rijndael_Algorithm.blockDecrypt2(c4, 0, roundKeys);
if (keyCheck(returnArray3, returnArray4))
return true;
}
}
}
return false;
}
public static boolean keyCheck(byte[] previous, byte[] current) {
if (checkASCII(previous, xor(previous, current)))
return true;
return false;
}
public static byte[] xor(byte[] previous, byte[] current) {
for (int x = 0; x < current.length; x++) {
current[x] = (byte) (current[x] ^ previous[x]);
}
return current;
}
public static boolean checkASCII(byte[] previous, byte[] current) {
for (int y = 0; y < current.length; y++) {
if ((current[y] < 32) || (current[y] >= 127)) {
continue;
} else {
return false;
}
}
return true;
}
public static byte[] hexStringToByteArray(String s) {
int len = s.length();
byte[] data = new byte[len / 2];
for (int i = 0; i < len; i += 2) {
data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4) + Character.digit(s.charAt(i + 1), 16));
}
return data;
}
}
// package sci.crypt.course.crypto;// import Rijndael_Algorithm;import java.security.SecureRandom;import java.math.BigInteger;import java.io.*;import java.util.*;/** * @author Xunhua Wang (wangxx@jmu.edu) * @date 09/27/2014 * All rights reserved */public class
AESExample { public void testAESImplementationTwo () { try { int times = 1000; byte[] inKey = new byte[16]; byte[] cbcIV = new byte[16]; SecureRandom random = SecureRandom.getInstance("SHA1PRNG"); random.nextBytes(inKey); // This generates a random AES-128
key random.nextBytes(cbcIV); // This generates a random IV // populate the plaintext String textString = "abcdefghijklmnop"; byte[] inText = textString.getBytes(); for (int i=0; i < 16; i++) inText[i] = (byte) (inText[i] ^ cbcIV[i]); // According to CBC, this
is how we use the IV long time1 = 0, time2 = 0, time3 = 0, time4 = 0; Object roundKeys = null; byte[] cipherText = null; for (int i=0; i < times; i++) // To get more accurate timing results, we have to warm up your CPU a little bit.// This is the whole purpose
of this line of code// This warm-up is NOT needed in your programming or real-world applications roundKeys = Rijndael_Algorithm.makeKey (Rijndael_Algorithm.ENCRYPT_MODE, inKey); // Now, we are ready and let's start the business System.out.println (System.getProperty
("line.separator") + "Testing AES implementation two ......"); time1 = System.currentTimeMillis(); // Start the timing clock // // Why do we do this 1000 times? If you choose to measure the time to perform a // single key expansion and encryption, you will
always get 0, as this process is too fast // for (int i=0; i < times; i++) { // for measuring time. If you use 1 instead, you will always get 0 in time3 // AES key schedule roundKeys = Rijndael_Algorithm.makeKey (Rijndael_Algorithm.ENCRYPT_MODE, inKey); //
AES encryption, the first parameter is 128-bit // plaintext, the second parameter is 0, and the // third parameter is the round keys generated by the // key schedule call cipherText = Rijndael_Algorithm.blockEncrypt2 (inText, 0, roundKeys); } time2 = System.currentTimeMillis();
// end the timing clock time3 = time2 - time1; // This is the time, in milliseconds, elapsed in this 1000 BLOCK encryptions // // Now it is time to decrypt the ciphertext // byte[] recoveredText = null; time1 = System.currentTimeMillis(); // Start the timing
clock for (int i=0; i < times; i++) { roundKeys = Rijndael_Algorithm.makeKey (Rijndael_Algorithm.DECRYPT_MODE, inKey); recoveredText = Rijndael_Algorithm.blockDecrypt2 (cipherText, 0, roundKeys); } time2 = System.currentTimeMillis(); // End the timing clock
time4 = time2 - time1; // This is the time, in milliseconds, elapsed in this 1000 BLOCK decryptions // How do we know whether the decryption works? We have to check the recovered cleartext for (int i=0; i < 16; i++) recoveredText[i] = (byte) (recoveredText[i]
^ cbcIV[i]); String recoveredString = new String (recoveredText); if (!recoveredString.equals (textString)) { System.out.println ("Decryption does NOT work!"); } else System.out.println ("Decryption worked beautifully and recovered the original plaintext!");
System.out.println ("It takes blockEncrypt2 " + time3 + " milliseconds to run AES-128 key scheduling & ENcryption " + times + " times"); System.out.println ("It takes blockDecrypt2 " + time4 + " milliseconds to run AES-128 key scheduling & DEcryption " + times
+ " times"); } catch (Exception ex) { ex.printStackTrace(); } } public void testAESSlowerImplementationOne () { try { int times = 1000; byte[] inKey = new byte[16]; byte[] cbcIV = new byte[16]; SecureRandom random = SecureRandom.getInstance("SHA1PRNG"); random.nextBytes(inKey);
// This generates a random AES-128 key random.nextBytes(cbcIV); // This generates a random IV // populate the plaintext String textString = "abcdefghijklmnop"; byte[] inText = textString.getBytes(); for (int i=0; i < 16; i++) inText[i] = (byte) (inText[i]
^ cbcIV[i]); // According to CBC, this is how we use the IV long time1 = 0, time2 = 0, time3 = 0, time4 = 0; Object roundKeys = null; byte[] cipherText = null; for (int i=0; i < times; i++) // To get more accurate timing results, we have to warm up your CPU
a little bit.// This is the whole purpose of this line of code// This warm-up is NOT needed in your programming or real-world applications roundKeys = Rijndael_Algorithm.makeKey (Rijndael_Algorithm.ENCRYPT_MODE, inKey); // Now, we are ready and let's start
the business System.out.println (System.getProperty ("line.separator") + "Testing AES implementation one, which is SLOWER ......"); time1 = System.currentTimeMillis(); // Start the timing clock // // Why do we do this 1000 times? If you choose to measure the
time to perform a // single key expansion and encryption, you will always get 0, as this process is too fast // for (int i=0; i < times; i++) { // for measuring time. If you use 1 instead, you will always get 0 in time3 // AES key schedule roundKeys = Rijndael_Algorithm.makeKey
(Rijndael_Algorithm.ENCRYPT_MODE, inKey); // AES encryption, the first parameter is 128-bit // plaintext, the second parameter is 0, and the // third parameter is the round keys generated by the // key schedule call cipherText = Rijndael_Algorithm.blockEncrypt
(inText, 0, roundKeys); } time2 = System.currentTimeMillis(); // end the timing clock time3 = time2 - time1; // This is the time, in milliseconds, elapsed in this 1000 BLOCK encryptions // // Now it is time to decrypt the ciphertext // byte[] recoveredText
= null; time1 = System.currentTimeMillis(); // Start the timing clock for (int i=0; i < times; i++) { roundKeys = Rijndael_Algorithm.makeKey (Rijndael_Algorithm.ENCRYPT_MODE, inKey); // Yes, you have to specify the ENCRYPTION_MODE for this slower implementation
recoveredText = Rijndael_Algorithm.blockDecrypt (cipherText, 0, roundKeys); } time2 = System.currentTimeMillis(); // End the timing clock time4 = time2 - time1; // This is the time, in milliseconds, elapsed in this 1000 BLOCK decryptions // How do we know
whether the decryption works? We have to check the recovered cleartext for (int i=0; i < 16; i++) recoveredText[i] = (byte) (recoveredText[i] ^ cbcIV[i]); String recoveredString = new String (recoveredText); System.out.println(recoveredString); if (!recoveredString.equals
(textString)) { System.out.println ("Decryption does NOT work!"); } else System.out.println ("Decryption worked beautifully and recovered the original plaintext!"); System.out.println ("It takes blockEncrypt " + time3 + " milliseconds to run AES-128 key scheduling
& ENcryption " + times + " times"); System.out.println ("It takes blockDecrypt " + time4 + " milliseconds to run AES-128 key scheduling & DEcryption " + times + " times"); } catch (Exception ex) { ex.printStackTrace(); } } public static String convertToString
(byte[] data) {char[] _hexArray = {'0', '1', '2', '3', '4', '5','6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};StringBuffer sb = new StringBuffer();for (int i=0; i <data.length; i++) {sb.append("" + _hexArray[(data[i] >> 4) & 0x0f] + _hexArray[data[i] &
0x0f]);}return sb.toString(); } public static void main (String[] args) { System.out.println("Starting..."); System.out.println("..."); try { AESExample aes = new AESExample(); aes.testAESImplementationTwo();aes.testAESSlowerImplementationOne (); } catch (Exception
ex) { ex.printStackTrace(); } }}
/**
* @author Xunhua Wang (wangxx@jmu.edu). All rights reserved.
* @date 09/25/2014
*/
public class AES_Structure {
public void crack (int start, int end) {
byte[] myguessedkey = new byte[16];
for (int i = 0; i < 16; i ++) myguessedkey[i] = (byte) 0x00; // This may be unnecessary but to make sure ...
myguessedkey[15] = (byte) 0x03;
for (int i = start; i <= end; i++) {
for (int j = 0; j <= 255; j++) {
for (int k = 0; k <= 255; k++) {
for (int x = 0; x <= 255; x++) {
for (int y = 6; y <= 255; y+=8) { // Why does y start from 6 and increment by 8? Think!
myguessedkey[0] = (byte) i;
myguessedkey[1] = (byte) j;
myguessedkey[2] = (byte) k;
myguessedkey[3] = (byte) x;
myguessedkey[4] = (byte) y;
//
// In my test run, print out myguessedkey to make sure that it is correct
// This line of code prints out and slows things down
//
// TODO: the following two lines should be commented out when you start running your code
//
for (byte ki : myguessedkey) System.out.print (String.format("X", ki & 0xff));
System.out.println ("");
//
// Next, we will test whether this guessed key is good or not
// TODO: YOU need to fill in the details here
//
boolean isCorrectKey = testOneKey (myguessedkey);
if (isCorrectKey) return;
}
}
}
}
}
}
//
// Method UNFINISHED
//
public boolean testOneKey (byte[] inKey) {
//
// Is this key correct? How to find out?
//
//
// Step 0. Prepare the IV and ciphertext blocks
//
String ivStr = "FEE6CB5BE4BBFC3DC623B8FE9F0006B2";
String c1Str = "C2B8B6A64DB0E2101B147381442C271C";
String c2Str = "33845FD95F0C589680CB822C6A0CB950";
String c3Str = "F4190D6C5D15FC968756DF5E229F32FA";
String c4Str = "C8406CF6E3C812EED825CB15970AFBB7";
byte[] iv = hexStringToByteArray (ivStr);
byte[] c1 = hexStringToByteArray (c1Str);
byte[] c2 = hexStringToByteArray (c2Str);
byte[] c3 = hexStringToByteArray (c3Str);
byte[] c4 = hexStringToByteArray (c4Str);
//
// Step 1. Prepare for the AES round keys
//
Object aesRoundKeys = null;
try {
aesRoundKeys = Rijndael_Algorithm.makeKey(Rijndael_Algorithm.DECRYPT_MODE, inKey);
} catch (Exception ex) {
ex.printStackTrace ();
return false;
}
//
// Step 2. Now decrypt ciphertext block 1 _and_ XOR with IV; UNFINISHED
//
byte[] returnArray = Rijndael_Algorithm.blockDecrypt2(c1, 0, aesRoundKeys);
// TODO: XOR with IV and test whether the cleartext block is good or not. If not, return false
// Otherwise, continue
//
//
// Step 3. Now decrypt ciphertext block 2 _and_ XOR with c1; UNFINISHED
//
byte[] returnArray2 = Rijndael_Algorithm.blockDecrypt2(c2, 0, aesRoundKeys);
// TODO: XOR with c1 and test whether the cleartext block is good or not. If not, return false
// Otherwise, continue
//
//
// Step 4. Now decrypt ciphertext block 3 _and_ XOR with c2; UNFINISHED
//
byte[] returnArray3 = Rijndael_Algorithm.blockDecrypt2(c3, 0, aesRoundKeys);
// TODO: XOR with c2 and test whether the cleartext block is good or not. If not, return false
// Otherwise, continue
//
//
// Step 5. Now decrypt ciphertext block 4 _and_ XOR with c3; UNFINISHED
//
byte[] returnArray4 = Rijndael_Algorithm.blockDecrypt2(c4, 0, aesRoundKeys);
// TODO: XOR with c3 and test whether the cleartext block is good or not. If not, return false
// Otherwise, found the key; print the key and all four plaintext blocks to a file
//
//
// The following line should be removed after you complete the code
//
return false;
}
//
// The following method is copied from Medovar and Sharp. Thank them for the code when you get a chance
//
public static byte[] hexStringToByteArray(String s) {
int len = s.length();
byte[] data = new byte[len / 2];
for (int i = 0; i < len; i += 2) {
data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4) + Character.digit(s.charAt(i + 1), 16));
}
return data;
}
public static void main (String args[]) {
if (args.length < 2) {
System.out.println ("Use java AESChallengeCrackerWithFiveLoops start end");
return;
}
try {
int start = Integer.parseInt (args[0]);
int end = Integer.parseInt (args[1]);
AES_Structure acc = new AES_Structure ();
acc.crack (start, end);
} catch (Exception ex) {
ex.printStackTrace ();
}
}
}
import java.security.InvalidKeyException;
import java.util.*;
import java.io.*;
// Brandon Senter & Thomas Le
// CS 457: Information Security
// Xunhua Wang; 09.27.2015
public class AES_NEW {
public static String correctKey = "";
public static void main(String[] args) throws Exception {
long startTime = System.currentTimeMillis();
// Scanner in = new Scanner(System.in);
String fileName = "Le_Senter.txt";
File out = new File(fileName);
if (out.exists() == false) {
out.createNewFile();
}
// System.out.println("Where to start?");
// int start = in.nextInt();
//
// System.out.println("Where to end?");
// int end = in.nextInt();
//
// in.close();
//
// System.out.println("Starting AES_Decrpytion.java");
decrypt(Integer.parseInt(args[0]), Integer.parseInt(args[1]));
long endTime = System.currentTimeMillis();
long totalTime = endTime - startTime;
PrintWriter writer = new PrintWriter(fileName, "UTF-8");
writer.println("Correct Key: " + correctKey);
writer.println("Total runtime (ms): " + totalTime);
writer.close();
// System.out.println("Done.");
}
public static void decrypt(int start, int end) throws InvalidKeyException {
byte[] potentialKey = new byte[16];
potentialKey[15] = 0x03;
for (int i = 5; i <= 14; i++)
potentialKey[i] = 0x00;
for (int i = start; i <= end; i++) {
potentialKey[0] = (byte) i;
for (int j = 0; j <= 255; j++) {
potentialKey[1] = (byte) j;
for (int k = 0; k <= 255; k++) {
potentialKey[2] = (byte) k;
for (int l = 0; l <= 255; l++) {
potentialKey[3] = (byte) l;
for (int m = 6; m <= 254; m += 8) {
potentialKey[4] = (byte) m;
// for (byte ki : potentialKey) System.out.print (String.format("X", ki & 0xff));
// System.out.println ("");
boolean isCorrect = testKey(potentialKey);
if (isCorrect) {
correctKey = potentialKey.toString();
return;
}
} // m-loop
} // l-loop
} // k-loop
} // j-loop
} // i-loop
} // decrypt()
public static boolean testKey(byte[] inKey) throws InvalidKeyException {
String IV_string = "5BF16CF65F7D2E547AAF6522342C30D8";
String C1_string = "E84811608B52001CDD9FC48334433B6F";
String C2_string = "C87C0B94F6A7747383881E18A6518DDF";
String C3_string = "3E64B928FA5EFC67275D77D18F505335";
String C4_string = "202F8CD7D8984917681CB1686D3239FB";
byte[] iv = hexStringToByteArray(IV_string);
byte[] c1 = hexStringToByteArray(C1_string);
byte[] c2 = hexStringToByteArray(C2_string);
byte[] c3 = hexStringToByteArray(C3_string);
byte[] c4 = hexStringToByteArray(C4_string);
Object roundKeys = null;
roundKeys = Rijndael_Algorithm.makeKey(Rijndael_Algorithm.DECRYPT_MODE, inKey);
byte[] returnArray = Rijndael_Algorithm.blockDecrypt2(c1, 0, roundKeys);
if (keyCheck(iv, returnArray)) {
byte[] returnArray2 = Rijndael_Algorithm.blockDecrypt2(c2, 0, roundKeys);
if (keyCheck(returnArray, returnArray2)) {
byte[] returnArray3 = Rijndael_Algorithm.blockDecrypt2(c3, 0, roundKeys);
if (keyCheck(returnArray2, returnArray3)) {
byte[] returnArray4 = Rijndael_Algorithm.blockDecrypt2(c4, 0, roundKeys);
if (keyCheck(returnArray3, returnArray4))
return true;
}
}
}
return false;
}
public static boolean keyCheck(byte[] previous, byte[] current) {
if (checkASCII(previous, xor(previous, current)))
return true;
return false;
}
public static byte[] xor(byte[] previous, byte[] current) {
for (int x = 0; x < current.length; x++) {
current[x] = (byte) (current[x] ^ previous[x]);
}
return current;
}
public static boolean checkASCII(byte[] previous, byte[] current) {
for (int y = 0; y < current.length; y++) {
if ((current[y] < 32) || (current[y] >= 127)) {
continue;
} else {
return false;
}
}
return true;
}
public static byte[] hexStringToByteArray(String s) {
int len = s.length();
byte[] data = new byte[len / 2];
for (int i = 0; i < len; i += 2) {
data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4) + Character.digit(s.charAt(i + 1), 16));
}
return data;
}
}
// $Id: Rijndael_Algorithm.java,v 1.1.1.1 2005/10/11 16:49:07 ruthap Exp $
//
// $Log: Rijndael_Algorithm.java,v $
// Revision 1.1.1.1 2005/10/11 16:49:07 ruthap
// My Research Source Code
//
// Revision 1.1 1998/04/12 Paulo
// + optimized methods for the default 128-bit block size.
//
// Revision 1.0 1998/03/11 Raif
// + original version.
//
// $Endlog$
/*
* Copyright (c) 1997, 1998 Systemics Ltd on behalf of
* the Cryptix Development Team. All rights reserved.
*/
// package Rijndael;
import java.io.PrintWriter;
import java.security.InvalidKeyException;
//...........................................................................
/**
* Rijndael --pronounced Reindaal-- is a variable block-size (128-, 192- and
* 256-bit), variable key-size (128-, 192- and 256-bit) symmetric cipher.<p>
*
* Rijndael was written by <a href="mailto:rijmen@esat.kuleuven.ac.be">Vincent
* Rijmen</a> and <a href="mailto:Joan.Daemen@village.uunet.be">Joan Daemen</a>.<p>
*
* Portions of this code are <b>Copyright</b> © 1997, 1998
* <a href="http://www.systemics.com/">Systemics Ltd</a> on behalf of the
* <a href="http://www.systemics.com/docs/cryptix/">Cryptix Development Team</a>.
* <br>All rights reserved.<p>
*
* <b>$Revision: 1.1.1.1 $</b>
* @author Raif S. Naffah
* @author Paulo S. L. M. Barreto
*/
public final class Rijndael_Algorithm // implicit no-argument constructor
{
// Debugging methods and variables
//...........................................................................
public static int ENCRYPT_MODE = 1;
public static int DECRYPT_MODE = 2;
public static int BOTH_MODE = 3;
static final String NAME = "Rijndael_Algorithm";
static final boolean IN = true, OUT = false;
static final boolean DEBUG = Rijndael_Properties.GLOBAL_DEBUG;
static final int debuglevel = DEBUG ? Rijndael_Properties.getLevel(NAME) : 0;
static final PrintWriter err = DEBUG ? Rijndael_Properties.getOutput() : null;
static final boolean TRACE = Rijndael_Properties.isTraceable(NAME);
static void debug (String s) { err.println(">>> "+NAME+": "+s); }
static void trace (boolean in, String s) {
if (TRACE) err.println((in?"==> ":"<== ")+NAME+"."+s);
}
static void trace (String s) { if (TRACE) err.println("<=> "+NAME+"."+s); }
// Constants and variables
//...........................................................................
static final int BLOCK_SIZE = 16; // default block size in bytes
static final int[] alog = new int[256];
static final int[] log = new int[256];
static final byte[] S = new byte[256];
static final byte[] Si = new byte[256];
static final int[] T1 = new int[256];
static final int[] T2 = new int[256];
static final int[] T3 = new int[256];
static final int[] T4 = new int[256];
static final int[] T5 = new int[256];
static final int[] T6 = new int[256];
static final int[] T7 = new int[256];
static final int[] T8 = new int[256];
static final int[] U1 = new int[256];
static final int[] U2 = new int[256];
static final int[] U3 = new int[256];
static final int[] U4 = new int[256];
static final byte[] rcon = new byte[30];
static final int[][][] shifts = new int[][][] {
{ {0, 0}, {1, 3}, {2, 2}, {3, 1} },
{ {0, 0}, {1, 5}, {2, 4}, {3, 3} },
{ {0, 0}, {1, 7}, {3, 5}, {4, 4} }
};
private static final char[] HEX_DIGITS = {
'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'
};
static byte[][] mixColumnsG = new byte[][] {
{2, 3, 1, 1},
{1, 2, 3, 1},
{1, 1, 2, 3},
{3, 1, 1, 2}
};
static byte[][] invMixColumnsG = new byte[][] {
{(byte)0x0E, (byte)0x0B, (byte)0x0D, (byte)0x09},
{(byte)0x09, (byte)0x0E, (byte)0x0B, (byte)0x0D},
{(byte)0x0D, (byte)0x09, (byte)0x0E, (byte)0x0B},
{(byte)0x0B, (byte)0x0D, (byte)0x09, (byte)0x0E}
};
// Static code - to intialise S-boxes and T-boxes
//...........................................................................
static {
long time = System.currentTimeMillis();
if (DEBUG && debuglevel > 6) {
System.out.println("Algorithm Name: "+Rijndael_Properties.FULL_NAME);
System.out.println("Electronic Codebook (ECB) Mode");
System.out.println();
}
int ROOT = 0x11B;
int i, j = 0;
//
// produce log and alog tables, needed for multiplying in the
// field GF(2^m) (generator = 3)
//
alog[0] = 1;
for (i = 1; i < 256; i++) {
j = (alog[i-1] << 1) ^ alog[i-1];
if ((j & 0x100) != 0) j ^= ROOT;
alog[i] = j;
}
for (i = 1; i < 255; i++) log[alog[i]] = i;
byte[][] A = new byte[][] {
{1, 1, 1, 1, 1, 0, 0, 0},
{0, 1, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 1, 1, 1, 1, 0},
{0, 0, 0, 1, 1, 1, 1, 1},
{1, 0, 0, 0, 1, 1, 1, 1},
{1, 1, 0, 0, 0, 1, 1, 1},
{1, 1, 1, 0, 0, 0, 1, 1},
{1, 1, 1, 1, 0, 0, 0, 1}
};
byte[] B = new byte[] { 0, 1, 1, 0, 0, 0, 1, 1};
//
// substitution box based on F^{-1}(x)
//
int t;
byte[][] box = new byte[256][8];
box[1][7] = 1;
for (i = 2; i < 256; i++) {
j = alog[255 - log[i]];
for (t = 0; t < 8; t++)
box[i][t] = (byte)((j >>> (7 - t)) & 0x01);
}
//
// affine transform: box[i] <- B + A*box[i]
//
byte[][] cox = new byte[256][8];
for (i = 0; i < 256; i++)
for (t = 0; t < 8; t++) {
cox[i][t] = B[t];
for (j = 0; j < 8; j++)
cox[i][t] ^= A[t][j] * box[i][j];
}
//
// S-boxes and inverse S-boxes
//
for (i = 0; i < 256; i++) {
S[i] = (byte)(cox[i][0] << 7);
for (t = 1; t < 8; t++)
S[i] ^= cox[i][t] << (7-t);
Si[S[i] & 0xFF] = (byte) i;
}
//
// T-boxes
//
byte[][] G = new byte[][] {
{2, 1, 1, 3},
{3, 2, 1, 1},
{1, 3, 2, 1},
{1, 1, 3, 2}
};
byte[][] AA = new byte[4][8];
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) AA[i][j] = G[i][j];
AA[i][i+4] = 1;
}
byte pivot, tmp;
byte[][] iG = new byte[4][4];
for (i = 0; i < 4; i++) {
pivot = AA[i][i];
if (pivot == 0) {
t = i + 1;
while ((AA[t][i] == 0) && (t < 4))
t++;
if (t == 4)
throw new RuntimeException("G matrix is not invertible");
else {
for (j = 0; j < 8; j++) {
tmp = AA[i][j];
AA[i][j] = AA[t][j];
AA[t][j] = (byte) tmp;
}
pivot = AA[i][i];
}
}
for (j = 0; j < 8; j++)
if (AA[i][j] != 0)
AA[i][j] = (byte)
alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255];
for (t = 0; t < 4; t++)
if (i != t) {
for (j = i+1; j < 8; j++)
AA[t][j] ^= mul(AA[i][j], AA[t][i]);
AA[t][i] = 0;
}
}
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++) iG[i][j] = AA[i][j + 4];
int s;
for (t = 0; t < 256; t++) {
s = S[t];
T1[t] = mul4(s, G[0]);
T2[t] = mul4(s, G[1]);
T3[t] = mul4(s, G[2]);
T4[t] = mul4(s, G[3]);
s = Si[t];
T5[t] = mul4(s, iG[0]);
T6[t] = mul4(s, iG[1]);
T7[t] = mul4(s, iG[2]);
T8[t] = mul4(s, iG[3]);
U1[t] = mul4(t, iG[0]);
U2[t] = mul4(t, iG[1]);
U3[t] = mul4(t, iG[2]);
U4[t] = mul4(t, iG[3]);
}
//
// round constants
//
rcon[0] = 1;
int r = 1;
for (t = 1; t < 30; ) rcon[t++] = (byte)(r = mul(2, r));
time = System.currentTimeMillis() - time;
if (DEBUG && debuglevel > 8) {
System.out.println("==========");
System.out.println();
System.out.println("Static Data");
System.out.println();
System.out.println("S[]:"); for(i=0;i<16;i++) { for(j=0;j<16;j++) System.out.print("0x"+byteToString(S[i*16+j])+", "); System.out.println();}
System.out.println();
System.out.println("Si[]:"); for(i=0;i<16;i++) { for(j=0;j<16;j++) System.out.print("0x"+byteToString(Si[i*16+j])+", "); System.out.println();}
System.out.println();
System.out.println("iG[]:"); for(i=0;i<4;i++){for(j=0;j<4;j++) System.out.print("0x"+byteToString(iG[i][j])+", "); System.out.println();}
System.out.println();
System.out.println("T1[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T1[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T2[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T2[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T3[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T3[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T4[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T4[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T5[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T5[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T6[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T6[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T7[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T7[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("T8[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(T8[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("U1[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U1[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("U2[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U2[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("U3[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U3[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("U4[]:"); for(i=0;i<64;i++){for(j=0;j<4;j++) System.out.print("0x"+intToString(U4[i*4+j])+", "); System.out.println();}
System.out.println();
System.out.println("rcon[]:"); for(i=0;i<5;i++){for(j=0;j<6;j++) System.out.print("0x"+byteToString(rcon[i*6+j])+", "); System.out.println();}
System.out.println();
System.out.println("Total initialization time: "+time+" ms.");
System.out.println();
}
}
// multiply two elements of GF(2^m)
static final int mul (int a, int b) {
return (a != 0 && b != 0) ?
alog[(log[a & 0xFF] + log[b & 0xFF]) % 255] :
0;
}
// convenience method used in generating Transposition boxes
static final int mul4 (int a, byte[] b) {
if (a == 0) return 0;
a = log[a & 0xFF];
int a0 = (b[0] != 0) ? alog[(a + log[b[0] & 0xFF]) % 255] & 0xFF : 0;
int a1 = (b[1] != 0) ? alog[(a + log[b[1] & 0xFF]) % 255] & 0xFF : 0;
int a2 = (b[2] != 0) ? alog[(a + log[b[2] & 0xFF]) % 255] & 0xFF : 0;
int a3 = (b[3] != 0) ? alog[(a + log[b[3] & 0xFF]) % 255] & 0xFF : 0;
return a0 << 24 | a1 << 16 | a2 << 8 | a3;
}
static final byte mulOneRowOneCol (byte[] inA, byte[] inB) {
byte result = (byte) 0x0;
for (int i=0; i < 4; i++) {
int tmpInt = mul (inA[i], inB[i]);
result = (byte) ((result ^ tmpInt) & 0xFF);
}
return result;
}
THE FIRST IMPLEMENTATION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
// Basic API methods
//...........................................................................
/**
* Convenience method to expand a user-supplied key material into a
* session key, assuming Rijndael's default block size (128-bit).
*
* @param key The 128/192/256-bit user-key to use.
* @exception InvalidKeyException If the key is invalid.
*/
public static Object makeKey (int mode, byte[] k) throws InvalidKeyException {
return makeKey(mode, k, BLOCK_SIZE);
}
/**
* NOTE: Xunhua Wang added this method on 02/20/2014
*
* Convenience method to encrypt exactly one block of plaintext, assuming
* Rijndael's default block size (128-bit).
*
* @param in The plaintext.
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for encryption.
* @return The ciphertext generated from a plaintext using the session key.
*/
public static byte[]
blockEncrypt (byte[] in, int inOffset, Object sessionKey)
{
if (DEBUG) trace(IN, "blockEncrypt("+in+", "+inOffset+", "+sessionKey+")");
int[][] Ke = (int[][]) ((Object[]) sessionKey)[0]; // extract encryption round keys
int ROUNDS = Ke.length - 1;
int[] Ker = Ke[0];
byte[] internalState = new byte[16]; // XHW, 02/20/2014
byte[] roundKeyBytes = new byte[16];
int counter = 0;
for (int i = 0; i < 4; i++) {
roundKeyBytes[counter++] = (byte) (Ker[i] >> 24 & 0xFF);
roundKeyBytes[counter++] = (byte) (Ker[i] >> 16 & 0xFF);
roundKeyBytes[counter++] = (byte) (Ker[i] >> 8 & 0xFF);
roundKeyBytes[counter++] = (byte) (Ker[i] & 0xFF);
}
for (int i = 0; i < 16; i++)
internalState[i] = (byte) ((in[inOffset + i] ^ roundKeyBytes[i]) & 0xFF);
for (int r = 1; r <= ROUNDS; r++) { // apply round transforms
Ker = Ke[r];
counter = 0;
for (int i = 0; i < 4; i++) {
roundKeyBytes[counter++] = (byte) (Ker[i] >> 24 & 0xFF);
roundKeyBytes[counter++] = (byte) (Ker[i] >> 16 & 0xFF);
roundKeyBytes[counter++] = (byte) (Ker[i] >> 8 & 0xFF);
roundKeyBytes[counter++] = (byte) (Ker[i] & 0xFF);
}
for (int i = 0; i < 16; i++)
internalState[i] = S[internalState[i] & 0xFF];
byte tmpByte = internalState[1];
internalState[1] = internalState[5];
internalState[5] = internalState[9];
internalState[9] = internalState[13];
internalState[13] = tmpByte;
tmpByte = internalState[2];
byte tmpByte2 = internalState[6];
internalState[2] = internalState[10];
internalState[6] = internalState[14];
internalState[10] = tmpByte;
internalState[14] = tmpByte2;
tmpByte = internalState[15];
internalState[15] = internalState[11];
internalState[11] = internalState[7];
internalState[7] = internalState[3];
internalState[3] = tmpByte;
if (r != ROUNDS) {
for (int i = 0; i < 4; i++) { // column of state
byte[] currentCol = {internalState[i*4], internalState[i*4+1], internalState[i*4+2], internalState[i*4+3]};
for (int j=0; j < 4; j++) { // row of constant matrix
internalState[i*4 + j] = mulOneRowOneCol (mixColumnsG[j], currentCol);
}
}
}
for (int i = 0; i < 16; i++)
internalState[i] = (byte) ((internalState[i] ^ roundKeyBytes[i]) & 0xFF);
} // End of Rounds
return internalState;
}
/**
* NOTE: Xunhua Wang added this method on 05/27/2014
* This textbook decryption requires the generation of the encryption in the reverse order. As a result,
* one has to set the mode to be ENCRYPT_MODE or BOTH_MODE
*
* Convenience method to decrypt exactly one block of plaintext, assuming
* Rijndael's default block size (128-bit).
*
* @param in The ciphertext.
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for decryption.
* @return The plaintext generated from a ciphertext using the session key.
*/
public static byte[]
blockDecrypt (byte[] in, int inOffset, Object sessionKey)
{
if (DEBUG) trace(IN, "blockDecrypt("+in+", "+inOffset+", "+sessionKey+")");
/*
int[][] Kd = (int[][]) ((Object[]) sessionKey)[1]; // extract decryption round keys
int ROUNDS = Kd.length - 1;
int[] Kdr = Kd[0];
*/
int[][] Ke = (int[][]) ((Object[]) sessionKey)[0]; // extract DEcryption round keys
int ROUNDS = Ke.length - 1;
int[] Kdr = Ke[ROUNDS];
byte[] internalState = new byte[16]; // XHW, 02/20/2014
byte[] roundKeyBytes = new byte[16];
int counter = 0;
for (int i = 0; i < 4; i++) {
roundKeyBytes[counter++] = (byte) (Kdr[i] >> 24 & 0xFF);
roundKeyBytes[counter++] = (byte) (Kdr[i] >> 16 & 0xFF);
roundKeyBytes[counter++] = (byte) (Kdr[i] >> 8 & 0xFF);
roundKeyBytes[counter++] = (byte) (Kdr[i] & 0xFF);
}
for (int i = 0; i < 16; i++)
internalState[i] = (byte) ((in[inOffset + i] ^ roundKeyBytes[i]) & 0xFF);
for (int r = 1; r <= ROUNDS; r++) { // apply round transforms
// Kdr = Kd[r];
Kdr = Ke [ROUNDS - r];
counter = 0;
for (int i = 0; i < 4; i++) {
roundKeyBytes[counter++] = (byte) (Kdr[i] >> 24 & 0xFF);
roundKeyBytes[counter++] = (byte) (Kdr[i] >> 16 & 0xFF);
roundKeyBytes[counter++] = (byte) (Kdr[i] >> 8 & 0xFF);
roundKeyBytes[counter++] = (byte) (Kdr[i] & 0xFF);
}
byte tmpByte = internalState[13];
internalState[13] = internalState[9];
internalState[9] = internalState[5];
internalState[5] = internalState[1];
internalState[1] = tmpByte;
tmpByte = internalState[10];
byte tmpByte2 = internalState[14];
internalState[10] = internalState[2];
internalState[14] = internalState[6];
internalState[2] = tmpByte;
internalState[6] = tmpByte2;
tmpByte = internalState[3];
internalState[3] = internalState[7];
internalState[7] = internalState[11];
internalState[11] = internalState[15];
internalState[15] = tmpByte;
for (int i = 0; i < 16; i++)
internalState[i] = Si[internalState[i] & 0xFF];
for (int i = 0; i < 16; i++)
internalState[i] = (byte) ((internalState[i] ^ roundKeyBytes[i]) & 0xFF);
if (r != ROUNDS) {
for (int i = 0; i < 4; i++) { // column of state
byte[] currentCol = {internalState[i*4], internalState[i*4+1], internalState[i*4+2], internalState[i*4+3]};
for (int j=0; j < 4; j++) { // row of constant matrix
internalState[i*4 + j] = mulOneRowOneCol (invMixColumnsG[j], currentCol);
}
}
}
} // End of Rounds
return internalState;
}
// Rijndael own methods
//...........................................................................
/** @return The default length in bytes of the Algorithm input block. */
public static int blockSize() { return BLOCK_SIZE; }
/**
* Expand a user-supplied key material into a session key.
*
* @param key The 128/192/256-bit user-key to use.
* @param blockSize The block size in bytes of this Rijndael.
* @exception InvalidKeyException If the key is invalid.
*/
public static synchronized Object makeKey (int mode, byte[] k, int blockSize)
throws InvalidKeyException
{
if (DEBUG) trace(IN, "makeKey("+k+", "+blockSize+")");
if (k == null)
throw new InvalidKeyException("Empty key");
if (!(k.length == 16 || k.length == 24 || k.length == 32))
throw new InvalidKeyException("Incorrect key length");
int ROUNDS = getRounds(k.length, blockSize);
int BC = blockSize / 4;
int[][] Ke = new int[ROUNDS + 1][BC]; // encryption round keys
int[][] Kd = new int[ROUNDS + 1][BC]; // decryption round keys
int ROUND_KEY_COUNT = (ROUNDS + 1) * BC;
int KC = k.length / 4;
int[] tk = new int[KC];
int i, j;
// copy user material bytes into temporary ints
for (i = 0, j = 0; i < KC; )
tk[i++] = (k[j++] & 0xFF) << 24 |
(k[j++] & 0xFF) << 16 |
(k[j++] & 0xFF) << 8 |
(k[j++] & 0xFF);
// copy values into round key arrays
int t = 0;
if (mode == ENCRYPT_MODE) {
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Ke[t / BC][t % BC] = tk[j];
}
} else if (mode == DECRYPT_MODE) {
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
}
} else {
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Ke[t / BC][t % BC] = tk[j];
Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
}
}
int tt, rconpointer = 0;
while (t < ROUND_KEY_COUNT) {
// extrapolate using phi (the round key evolution function)
tt = tk[KC - 1];
tk[0] ^= (S[(tt >>> 16) & 0xFF] & 0xFF) << 24 ^
(S[(tt >>> 8) & 0xFF] & 0xFF) << 16 ^
(S[ tt & 0xFF] & 0xFF) << 8 ^
(S[(tt >>> 24) & 0xFF] & 0xFF) ^
(rcon[rconpointer++] & 0xFF) << 24;
if (KC != 8)
for (i = 1, j = 0; i < KC; ) tk[i++] ^= tk[j++];
else {
for (i = 1, j = 0; i < KC / 2; ) tk[i++] ^= tk[j++];
tt = tk[KC / 2 - 1];
tk[KC / 2] ^= (S[ tt & 0xFF] & 0xFF) ^
(S[(tt >>> 8) & 0xFF] & 0xFF) << 8 ^
(S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^
(S[(tt >>> 24) & 0xFF] & 0xFF) << 24;
for (j = KC / 2, i = j + 1; i < KC; ) tk[i++] ^= tk[j++];
}
// copy values into round key arrays
if (mode == ENCRYPT_MODE) {
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Ke[t / BC][t % BC] = tk[j];
}
} else if (mode == DECRYPT_MODE) {
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
}
} else {
for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
Ke[t / BC][t % BC] = tk[j];
Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
}
}
}
for (int r = 1; r < ROUNDS; r++) // inverse MixColumn where needed
for (j = 0; j < BC; j++) {
tt = Kd[r][j];
Kd[r][j] = U1[(tt >>> 24) & 0xFF] ^
U2[(tt >>> 16) & 0xFF] ^
U3[(tt >>> 8) & 0xFF] ^
U4[ tt & 0xFF];
}
// assemble the encryption (Ke) and decryption (Kd) round keys into
// one sessionKey object
Object[] sessionKey = new Object[] {Ke, Kd};
if (DEBUG) trace(OUT, "makeKey()");
return sessionKey;
}
A SECOND IMPLEMENTATION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
/**
* Convenience method to encrypt exactly one block of plaintext, assuming
* Rijndael's default block size (128-bit).
*
* @param in The plaintext.
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for encryption.
* @return The ciphertext generated from a plaintext using the session key.
*/
public static byte[]
blockEncrypt2 (byte[] in, int inOffset, Object sessionKey)
{
if (DEBUG) trace(IN, "blockEncrypt2("+in+", "+inOffset+", "+sessionKey+")");
int[][] Ke = (int[][]) ((Object[]) sessionKey)[0]; // extract encryption round keys
int ROUNDS = Ke.length - 1;
int[] Ker = Ke[0];
// plaintext to ints + key
int t0 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ker[0];
int t1 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ker[1];
int t2 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ker[2];
int t3 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ker[3];
int a0, a1, a2, a3;
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
Ker = Ke[r];
a0 = (T1[(t0 >>> 24) & 0xFF] ^
T2[(t1 >>> 16) & 0xFF] ^
T3[(t2 >>> 8) & 0xFF] ^
T4[ t3 & 0xFF] ) ^ Ker[0];
a1 = (T1[(t1 >>> 24) & 0xFF] ^
T2[(t2 >>> 16) & 0xFF] ^
T3[(t3 >>> 8) & 0xFF] ^
T4[ t0 & 0xFF] ) ^ Ker[1];
a2 = (T1[(t2 >>> 24) & 0xFF] ^
T2[(t3 >>> 16) & 0xFF] ^
T3[(t0 >>> 8) & 0xFF] ^
T4[ t1 & 0xFF] ) ^ Ker[2];
a3 = (T1[(t3 >>> 24) & 0xFF] ^
T2[(t0 >>> 16) & 0xFF] ^
T3[(t1 >>> 8) & 0xFF] ^
T4[ t2 & 0xFF] ) ^ Ker[3];
t0 = a0;
t1 = a1;
t2 = a2;
t3 = a3;
if (DEBUG && debuglevel > 6) System.out.println("CT"+r+"="+intToString(t0)+intToString(t1)+intToString(t2)+intToString(t3));
}
// last round is special
byte[] result = new byte[BLOCK_SIZE]; // the resulting ciphertext
Ker = Ke[ROUNDS];
int tt = Ker[0];
result[ 0] = (byte)(S[(t0 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 1] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
result[ 2] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8));
result[ 3] = (byte)(S[ t3 & 0xFF] ^ tt );
tt = Ker[1];
result[ 4] = (byte)(S[(t1 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 5] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
result[ 6] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8));
result[ 7] = (byte)(S[ t0 & 0xFF] ^ tt );
tt = Ker[2];
result[ 8] = (byte)(S[(t2 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 9] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
result[10] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8));
result[11] = (byte)(S[ t1 & 0xFF] ^ tt );
tt = Ker[3];
result[12] = (byte)(S[(t3 >>> 24) & 0xFF] ^ (tt >>> 24));
result[13] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
result[14] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8));
result[15] = (byte)(S[ t2 & 0xFF] ^ tt );
if (DEBUG && debuglevel > 6) {
System.out.println("CT="+toString(result));
System.out.println();
}
if (DEBUG) trace(OUT, "blockEncrypt2()");
return result;
}
/**
* Convenience method to decrypt exactly one block of plaintext, assuming
* Rijndael's default block size (128-bit).
*
* @param in The ciphertext.
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for decryption.
* @return The plaintext generated from a ciphertext using the session key.
*/
public static byte[]
blockDecrypt2 (byte[] in, int inOffset, Object sessionKey)
{
if (DEBUG) trace(IN, "blockDecrypt2("+in+", "+inOffset+", "+sessionKey+")");
int[][] Kd = (int[][]) ((Object[]) sessionKey)[1]; // extract decryption round keys
int ROUNDS = Kd.length - 1;
int[] Kdr = Kd[0];
// ciphertext to ints + key
int t0 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kdr[0];
int t1 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kdr[1];
int t2 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kdr[2];
int t3 = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kdr[3];
int a0, a1, a2, a3;
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
Kdr = Kd[r];
a0 = (T5[(t0 >>> 24) & 0xFF] ^
T6[(t3 >>> 16) & 0xFF] ^
T7[(t2 >>> 8) & 0xFF] ^
T8[ t1 & 0xFF] ) ^ Kdr[0];
a1 = (T5[(t1 >>> 24) & 0xFF] ^
T6[(t0 >>> 16) & 0xFF] ^
T7[(t3 >>> 8) & 0xFF] ^
T8[ t2 & 0xFF] ) ^ Kdr[1];
a2 = (T5[(t2 >>> 24) & 0xFF] ^
T6[(t1 >>> 16) & 0xFF] ^
T7[(t0 >>> 8) & 0xFF] ^
T8[ t3 & 0xFF] ) ^ Kdr[2];
a3 = (T5[(t3 >>> 24) & 0xFF] ^
T6[(t2 >>> 16) & 0xFF] ^
T7[(t1 >>> 8) & 0xFF] ^
T8[ t0 & 0xFF] ) ^ Kdr[3];
t0 = a0;
t1 = a1;
t2 = a2;
t3 = a3;
if (DEBUG && debuglevel > 6) System.out.println("PT"+r+"="+intToString(t0)+intToString(t1)+intToString(t2)+intToString(t3));
}
// last round is special
byte[] result = new byte[16]; // the resulting plaintext
Kdr = Kd[ROUNDS];
int tt = Kdr[0];
result[ 0] = (byte)(Si[(t0 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 1] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
result[ 2] = (byte)(Si[(t2 >>> 8) & 0xFF] ^ (tt >>> 8));
result[ 3] = (byte)(Si[ t1 & 0xFF] ^ tt );
tt = Kdr[1];
result[ 4] = (byte)(Si[(t1 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 5] = (byte)(Si[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
result[ 6] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (tt >>> 8));
result[ 7] = (byte)(Si[ t2 & 0xFF] ^ tt );
tt = Kdr[2];
result[ 8] = (byte)(Si[(t2 >>> 24) & 0xFF] ^ (tt >>> 24));
result[ 9] = (byte)(Si[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
result[10] = (byte)(Si[(t0 >>> 8) & 0xFF] ^ (tt >>> 8));
result[11] = (byte)(Si[ t3 & 0xFF] ^ tt );
tt = Kdr[3];
result[12] = (byte)(Si[(t3 >>> 24) & 0xFF] ^ (tt >>> 24));
result[13] = (byte)(Si[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
result[14] = (byte)(Si[(t1 >>> 8) & 0xFF] ^ (tt >>> 8));
result[15] = (byte)(Si[ t0 & 0xFF] ^ tt );
if (DEBUG && debuglevel > 6) {
System.out.println("PT="+toString(result));
System.out.println();
}
if (DEBUG) trace(OUT, "blockDecrypt2()");
return result;
}
OTHER METHODS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
/** A basic symmetric encryption/decryption test. */
public static boolean self_test() { return self_test(BLOCK_SIZE); }
ADDITIONAL METHODS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
/**
* Encrypt exactly one block of plaintext.
*
* @param in The plaintext.
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for encryption.
* @param blockSize The block size in bytes of this Rijndael.
* @return The ciphertext generated from a plaintext using the session key.
*/
public static byte[]
blockEncrypt2 (byte[] in, int inOffset, Object sessionKey, int blockSize) {
if (blockSize == BLOCK_SIZE)
return blockEncrypt2(in, inOffset, sessionKey);
if (DEBUG) trace(IN, "blockEncrypt2("+in+", "+inOffset+", "+sessionKey+", "+blockSize+")");
Object[] sKey = (Object[]) sessionKey; // extract encryption round keys
int[][] Ke = (int[][]) sKey[0];
int BC = blockSize / 4;
int ROUNDS = Ke.length - 1;
int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
int s1 = shifts[SC][1][0];
int s2 = shifts[SC][2][0];
int s3 = shifts[SC][3][0];
int[] a = new int[BC];
int[] t = new int[BC]; // temporary work array
int i;
byte[] result = new byte[blockSize]; // the resulting ciphertext
int j = 0, tt;
for (i = 0; i < BC; i++) // plaintext to ints + key
t[i] = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Ke[0][i];
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
for (i = 0; i < BC; i++)
a[i] = (T1[(t[ i ] >>> 24) & 0xFF] ^
T2[(t[(i + s1) % BC] >>> 16) & 0xFF] ^
T3[(t[(i + s2) % BC] >>> 8) & 0xFF] ^
T4[ t[(i + s3) % BC] & 0xFF] ) ^ Ke[r][i];
System.arraycopy(a, 0, t, 0, BC);
if (DEBUG && debuglevel > 6) System.out.println("CT"+r+"="+toString(t));
}
for (i = 0; i < BC; i++) { // last round is special
tt = Ke[ROUNDS][i];
result[j++] = (byte)(S[(t[ i ] >>> 24) & 0xFF] ^ (tt >>> 24));
result[j++] = (byte)(S[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
result[j++] = (byte)(S[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8));
result[j++] = (byte)(S[ t[(i + s3) % BC] & 0xFF] ^ tt);
}
if (DEBUG && debuglevel > 6) {
System.out.println("CT="+toString(result));
System.out.println();
}
if (DEBUG) trace(OUT, "blockEncrypt2()");
return result;
}
/**
* Decrypt exactly one block of ciphertext.
*
* @param in The ciphertext.
* @param inOffset Index of in from which to start considering data.
* @param sessionKey The session key to use for decryption.
* @param blockSize The block size in bytes of this Rijndael.
* @return The plaintext generated from a ciphertext using the session key.
*/
public static byte[]
blockDecrypt2 (byte[] in, int inOffset, Object sessionKey, int blockSize)
{
if (blockSize == BLOCK_SIZE)
return blockDecrypt2 (in, inOffset, sessionKey);
if (DEBUG) trace(IN, "blockDecrypt2("+in+", "+inOffset+", "+sessionKey+", "+blockSize+")");
Object[] sKey = (Object[]) sessionKey; // extract decryption round keys
int[][] Kd = (int[][]) sKey[1];
int BC = blockSize / 4;
int ROUNDS = Kd.length - 1;
int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
int s1 = shifts[SC][1][1];
int s2 = shifts[SC][2][1];
int s3 = shifts[SC][3][1];
int[] a = new int[BC];
int[] t = new int[BC]; // temporary work array
int i;
byte[] result = new byte[blockSize]; // the resulting plaintext
int j = 0, tt;
for (i = 0; i < BC; i++) // ciphertext to ints + key
t[i] = ((in[inOffset++] & 0xFF) << 24 |
(in[inOffset++] & 0xFF) << 16 |
(in[inOffset++] & 0xFF) << 8 |
(in[inOffset++] & 0xFF) ) ^ Kd[0][i];
for (int r = 1; r < ROUNDS; r++) { // apply round transforms
for (i = 0; i < BC; i++)
a[i] = (T5[(t[ i ] >>> 24) & 0xFF] ^
T6[(t[(i + s1) % BC] >>> 16) & 0xFF] ^
T7[(t[(i + s2) % BC] >>> 8) & 0xFF] ^
T8[ t[(i + s3) % BC] & 0xFF] ) ^ Kd[r][i];
System.arraycopy(a, 0, t, 0, BC);
if (DEBUG && debuglevel > 6) System.out.println("PT"+r+"="+toString(t));
}
for (i = 0; i < BC; i++) { // last round is special
tt = Kd[ROUNDS][i];
result[j++] = (byte)(Si[(t[ i ] >>> 24) & 0xFF] ^ (tt >>> 24));
result[j++] = (byte)(Si[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
result[j++] = (byte)(Si[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8));
result[j++] = (byte)(Si[ t[(i + s3) % BC] & 0xFF] ^ tt);
}
if (DEBUG && debuglevel > 6) {
System.out.println("PT="+toString(result));
System.out.println();
}
if (DEBUG) trace(OUT, "blockDecrypt2()");
return result;
}
/** A basic symmetric encryption/decryption test for a given key size. */
private static boolean self_test (int keysize)
{
if (DEBUG) trace(IN, "self_test("+keysize+")");
boolean ok = false;
try {
byte[] kb = new byte[keysize];
byte[] pt = new byte[BLOCK_SIZE];
int i;
for (i = 0; i < keysize; i++)
kb[i] = (byte) i;
for (i = 0; i < BLOCK_SIZE; i++)
pt[i] = (byte) i;
if (DEBUG && debuglevel > 6) {
System.out.println("==========");
System.out.println();
System.out.println("KEYSIZE="+(8*keysize));
System.out.println("KEY="+toString(kb));
System.out.println();
}
Object key = makeKey(BOTH_MODE, kb, BLOCK_SIZE);
if (DEBUG && debuglevel > 6) {
System.out.println("Intermediate Ciphertext Values (Encryption)");
System.out.println();
System.out.println("PT="+toString(pt));
}
byte[] ct = blockEncrypt2(pt, 0, key, BLOCK_SIZE);
if (DEBUG && debuglevel > 6) {
System.out.println("Intermediate Plaintext Values (Decryption)");
System.out.println();
System.out.println("CT="+toString(ct));
}
byte[] cpt = blockDecrypt2(ct, 0, key, BLOCK_SIZE);
ok = areEqual(pt, cpt);
if (!ok)
throw new RuntimeException("Symmetric operation failed");
}
catch (Exception x) {
if (DEBUG && debuglevel > 0) {
debug("Exception encountered during self-test: " + x.getMessage());
x.printStackTrace();
}
}
if (DEBUG && debuglevel > 0) debug("Self-test OK? " + ok);
if (DEBUG) trace(OUT, "self_test()");
return ok;
}
/**
* Return The number of rounds for a given Rijndael's key and block sizes.
*
* @param keySize The size of the user key material in bytes.
* @param blockSize The desired block size in bytes.
* @return The number of rounds for a given Rijndael's key and
* block sizes.
*/
public static int getRounds (int keySize, int blockSize) {
switch (keySize) {
case 16:
return blockSize == 16 ? 10 : (blockSize == 24 ? 12 : 14);
case 24:
return blockSize != 32 ? 12 : 14;
default: // 32 bytes = 256 bits
return 14;
}
}
UTILITY METHODS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
//
// utility static methods (from cryptix.util.core ArrayUtil and Hex classes)
//...........................................................................
/**
* Compares two byte arrays for equality.
*
* @return true if the arrays have identical contents
*/
private static boolean areEqual (byte[] a, byte[] b) {
int aLength = a.length;
if (aLength != b.length)
return false;
for (int i = 0; i < aLength; i++)
if (a[i] != b[i])
return false;
return true;
}
/**
* Returns a string of 2 hexadecimal digits (most significant
* digit first) corresponding to the lowest 8 bits of <i>n</i>.
*/
private static String byteToString (int n) {
char[] buf = {
HEX_DIGITS[(n >>> 4) & 0x0F],
HEX_DIGITS[ n & 0x0F]
};
return new String(buf);
}
/**
* Returns a string of 8 hexadecimal digits (most significant
* digit first) corresponding to the integer <i>n</i>, which is
* treated as unsigned.
*/
private static String intToString (int n) {
char[] buf = new char[8];
for (int i = 7; i >= 0; i--) {
buf[i] = HEX_DIGITS[n & 0x0F];
n >>>= 4;
}
return new String(buf);
}
/**
* Returns a string of hexadecimal digits from a byte array. Each
* byte is converted to 2 hex symbols.
*/
private static String toString (byte[] ba) {
int length = ba.length;
char[] buf = new char[length * 2];
for (int i = 0, j = 0, k; i < length; ) {
k = ba[i++];
buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf[j++] = HEX_DIGITS[ k & 0x0F];
}
return new String(buf);
}
//
// Xunhua: We need to add some spaces and line breaks
//
private static String toString2 (byte[] ba) {
int length = ba.length;
// char[] buf = new char[length * 2];
char[] buf2 = new char[2];
StringBuffer sb = new StringBuffer ();
for (int i = 0; i < length; ) {
int k = ba[i++];
buf2[0] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf2[1] = HEX_DIGITS[ k & 0x0F];
sb.append (buf2);
if (i == 0) {
sb.append (System.getProperty ("line.separator"));
} else {
sb.append (" ");
}
}
return sb.toString();
}
/**
* Returns a string of hexadecimal digits from an integer array. Each
* int is converted to 4 hex symbols.
*/
private static String toString (int[] ia) {
int length = ia.length;
char[] buf = new char[length * 8];
for (int i = 0, j = 0, k; i < length; i++) {
k = ia[i];
buf[j++] = HEX_DIGITS[(k >>> 28) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 24) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 20) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 16) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 12) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 8) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf[j++] = HEX_DIGITS[ k & 0x0F];
}
return new String(buf);
}
private static String toString2 (int[] ia) {
int length = ia.length;
// char[] buf = new char[length * 8];
char[] buf2 = new char[8];
StringBuffer sb = new StringBuffer ();
for (int i = 0; i < length; i++) {
if (i != 0 && i == 0) {
sb.append (System.getProperty ("line.separator"));
} else if (i != 0) {
sb.append (" ");
}
int k = ia[i];
buf2[0] = HEX_DIGITS[(k >>> 28) & 0x0F];
buf2[1] = HEX_DIGITS[(k >>> 24) & 0x0F];
buf2[2] = HEX_DIGITS[(k >>> 20) & 0x0F];
buf2[3] = HEX_DIGITS[(k >>> 16) & 0x0F];
buf2[4] = HEX_DIGITS[(k >>> 12) & 0x0F];
buf2[5] = HEX_DIGITS[(k >>> 8) & 0x0F];
buf2[6] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf2[7] = HEX_DIGITS[ k & 0x0F];
sb.append (buf2);
}
return sb.toString();
}
// main(): use to generate the Intermediate Values KAT
//...........................................................................
public static void main (String[] args) {
self_test(16);
self_test(24);
self_test(32);
}
}
// $Id: Rijndael_Properties.java,v 1.1.1.1 2005/10/11 16:49:07 ruthap Exp $
//
// $Log: Rijndael_Properties.java,v $
// Revision 1.1.1.1 2005/10/11 16:49:07 ruthap
// My Research Source Code
//
// Revision 1.0 1998/04/07 raif
// + original version.
//
// $Endlog$
/*
* Copyright (c) 1997, 1998 Systemics Ltd on behalf of
* the Cryptix Development Team. All rights reserved.
*/
// package Rijndael;
//import java.io.FileInputStream;
//import java.io.FileNotFoundException;
import java.io.InputStream;
//import java.io.IOException;
import java.io.PrintWriter;
import java.io.PrintStream;
import java.util.Enumeration;
import java.util.Properties;
/**
* This class acts as a central repository for an algorithm specific
* properties. It reads an (algorithm).properties file containing algorithm-
* specific properties. When using the AES-Kit, this (algorithm).properties
* file is located in the (algorithm).jar file produced by the "jarit" batch/
* script command.<p>
*
* <b>Copyright</b> © 1997, 1998
* <a href="http://www.systemics.com/">Systemics Ltd</a> on behalf of the
* <a href="http://www.systemics.com/docs/cryptix/">Cryptix Development Team</a>.
* <br>All rights reserved.<p>
*
* <b>$Revision: 1.1.1.1 $</b>
* @author David Hopwood
* @author Jill Baker
* @author Raif S. Naffah
*/
public class Rijndael_Properties // implicit no-argument constructor
{
// Constants and variables with relevant static code
//...........................................................................
static final boolean GLOBAL_DEBUG = false;
static final String ALGORITHM = "Rijndael";
static final double VERSION = 0.1;
static final String FULL_NAME = ALGORITHM + " ver. " + VERSION;
static final String NAME = "Rijndael_Properties";
static final Properties properties = new Properties();
/** Default properties in case .properties file was not found. */
private static final String[][] DEFAULT_PROPERTIES = {
{"Trace.Rijndael_Algorithm", "true"},
{"Debug.Level.*", "1"},
{"Debug.Level.Rijndael_Algorithm", "9"},
};
static {
if (GLOBAL_DEBUG) System.err.println(">>> " + NAME + ": Looking for " + ALGORITHM + " properties");
String it = ALGORITHM + ".properties";
InputStream is = Rijndael_Properties.class.getResourceAsStream(it);
boolean ok = is != null;
if (ok)
try {
properties.load(is);
is.close();
if (GLOBAL_DEBUG) System.err.println(">>> " + NAME + ": Properties file loaded OK...");
} catch (Exception x) {
ok = false;
}
if (!ok) {
if (GLOBAL_DEBUG) System.err.println(">>> " + NAME + ": WARNING: Unable to load \"" + it + "\" from CLASSPATH.");
if (GLOBAL_DEBUG) System.err.println(">>> " + NAME + ": Will use default values instead...");
int n = DEFAULT_PROPERTIES.length;
for (int i = 0; i < n; i++)
properties.put(
DEFAULT_PROPERTIES[i][0], DEFAULT_PROPERTIES[i][1]);
if (GLOBAL_DEBUG) System.err.println(">>> " + NAME + ": Default properties now set...");
}
}
// Properties methods (excluding load and save, which are deliberately not
// supported).
//...........................................................................
/** Get the value of a property for this algorithm. */
public static String getProperty (String key) {
return properties.getProperty(key);
}
/**
* Get the value of a property for this algorithm, or return
* <i>value</i> if the property was not set.
*/
public static String getProperty (String key, String value) {
return properties.getProperty(key, value);
}
/** List algorithm properties to the PrintStream <i>out</i>. */
public static void list (PrintStream out) {
list(new PrintWriter(out, true));
}
/** List algorithm properties to the PrintWriter <i>out</i>. */
public static void list (PrintWriter out) {
out.println("#");
out.println("# ----- Begin "+ALGORITHM+" properties -----");
out.println("#");
String key, value;
Enumeration enum1 = properties.propertyNames();
while (enum1.hasMoreElements()) {
key = (String) enum1.nextElement();
value = getProperty(key);
out.println(key + " = " + value);
}
out.println("#");
out.println("# ----- End "+ALGORITHM+" properties -----");
}
// public synchronized void load(InputStream in) throws IOException {}
public static Enumeration propertyNames() {
return properties.propertyNames();
}
// public void save (OutputStream os, String comment) {}
// Developer support: Tracing and debugging enquiry methods (package-private)
//...........................................................................
/**
* Return true if tracing is requested for a given class.<p>
*
* User indicates this by setting the tracing <code>boolean</code>
* property for <i>label</i> in the <code>(algorithm).properties</code>
* file. The property's key is "<code>Trace.<i>label</i></code>".<p>
*
* @param label The name of a class.
* @return True iff a boolean true value is set for a property with
* the key <code>Trace.<i>label</i></code>.
*/
static boolean isTraceable (String label) {
String s = getProperty("Trace." + label);
if (s == null)
return false;
return new Boolean(s).booleanValue();
}
/**
* Return the debug level for a given class.<p>
*
* User indicates this by setting the numeric property with key
* "<code>Debug.Level.<i>label</i></code>".<p>
*
* If this property is not set, "<code>Debug.Level.*</code>" is looked up
* next. If neither property is set, or if the first property found is
* not a valid decimal integer, then this method returns 0.
*
* @param label The name of a class.
* @return The required debugging level for the designated class.
*/
static int getLevel(String label) {
String s = getProperty("Debug.Level." + label);
if (s == null) {
s = getProperty("Debug.Level.*");
if (s == null)
return 0;
}
try {
return Integer.parseInt(s);
} catch (NumberFormatException e) {
return 0;
}
}
/**
* Return the PrintWriter to which tracing and debugging output is to
* be sent.<p>
*
* User indicates this by setting the property with key <code>Output</code>
* to the literal <code>out</code> or <code>err</code>.<p>
*
* By default or if the set value is not allowed, <code>System.err</code>
* will be used.
*/
static PrintWriter getOutput() {
PrintWriter pw;
String name = getProperty("Output");
if (name != null && name.equals("out"))
pw = new PrintWriter(System.out, true);
else
pw = new PrintWriter(System.err, true);
return pw;
}
}Error: Could not find or load main class AES_NEW
Error: Could not find or load main class AES_NEW.java
Error: Could not find or load main class AES_NEW
Error: Could not find or load main class AES_NEW
Error: Could not find or load main class AES_NEW
Error: Could not find or load main class AES_NEW
Error: Could not find or load main class AES_NEW
Error: Could not find or load main class AES_NEW
Where to start?
Exception in thread "main" java.util.NoSuchElementException
at java.util.Scanner.throwFor(Scanner.java:907)
at java.util.Scanner.next(Scanner.java:1530)
at java.util.Scanner.nextInt(Scanner.java:2160)
at java.util.Scanner.nextInt(Scanner.java:2119)
at AES_NEW.main(AES_NEW.java:26)
Where to start?
Exception in thread "main" java.util.NoSuchElementException
at java.util.Scanner.throwFor(Scanner.java:907)
at java.util.Scanner.next(Scanner.java:1530)
at java.util.Scanner.nextInt(Scanner.java:2160)
at java.util.Scanner.nextInt(Scanner.java:2119)
at AES_NEW.main(AES_NEW.java:26)
Where to start?
Exception in thread "main" java.util.NoSuchElementException
at java.util.Scanner.throwFor(Scanner.java:907)
at java.util.Scanner.next(Scanner.java:1530)
at java.util.Scanner.nextInt(Scanner.java:2160)
at java.util.Scanner.nextInt(Scanner.java:2119)
at AES_NEW.main(AES_NEW.java:26)
Where to start?
Exception in thread "main" java.util.NoSuchElementException
at java.util.Scanner.throwFor(Scanner.java:907)
at java.util.Scanner.next(Scanner.java:1530)
at java.util.Scanner.nextInt(Scanner.java:2160)
at java.util.Scanner.nextInt(Scanner.java:2119)
at AES_NEW.main(AES_NEW.java:26)