Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right. Integers in each column are sorted in ascending from top to bottom. For example,
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5, return true. Given target = 20, return false.
经分析,此题意味,在一个每行都是从左到右递增、每列都是从上下递增的矩阵中查找某数。我开始的想法比较直接,从第一行第一个查找到最后一行,则其复杂度很高O(mn);稍分析下可以发现每行越往右越大,每列越向下越大,所以可以从右上角开始,在其中从后向前,从上向下查找,若目标值大于当前位置的值,则向下走,小于时则向左走,等于是则返回真,直到无路可走时返回假,此时复杂度为O(m+n)。下面是我的实现
bool searchMatrix(vector<vector<int>>& matrix, int target) { int m = matrix.size(); if (m == 0) return false; int n = matrix[0].size(); int i = 0, j = n - 1; while (i < m && j >= 0) { if (matrix[i][j] == target) return true; else if (matrix[i][j] > target) { j--; } else i++; } return false; }后来我又发现,其实可以直接每行二分查找,复杂度为O(mlogn),我认为也是可以接受的,而其实现起来很简单,可以直接用stl库里的函数。