原文来自:https://goo.gl/EieLZK
这篇文章主要讲如何创建二叉查找树。如果有哪些不对的地方请指正,欢迎批评和建议。
本文将依照一下的几点介绍
什么是二叉查找数二叉查找树的遍历代码例子一个二叉树如果想成为二叉查找树需要满足以下条件: (1)若任意节点的左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值; (2)若任意节点的右子树不为空,则右子树上所有节点的值均大于或等于根节点的值; (3)任意节点的左、右子树也分别为二叉查找树。
下图所示为一棵二叉查找树
二叉查找树的遍历和普通的二叉树遍历没有本质上的区别。
(1)先序遍历:按照 根-左子树-右子树 的顺序遍历; (2)中序遍历:按照 左子树-根-右子树 的顺序遍历; (3)后序遍历:按照 左子树-右子树-根 的顺序遍历
给出数组:{20, 15, 200, 25, -5, 0, 100, 20, 12, 126, 1000, -150} 作为节点上的值,如何创建以及遍历二叉查找数呢?我们此处假设根节点的值为20(可以选择任意一个值作为根节点值)。
public class TreeNode { int val; public TreeNode left; public TreeNode right; public TreeNode(int x) { val = x; } public void addNode(int num) { if (num < this.val) { if (this.left != null) { this.left.addNode(num); } else { this.left = new TreeNode(num); } return; } if (this.right != null) { this.right.addNode(num); } else { this.right = new TreeNode(num); } return; } // Visit the node first, then left and right sub-trees public void traversePreOrder() { System.out.println(this.val); if (this.left != null) { this.left.traversePreOrder(); } if (this.right != null) { this.right.traversePreOrder(); } } // Visit left sub-tree, then node and then, right sub-tree public void traverseInOrder() { if (this.left != null) { this.left.traverseInOrder(); } System.out.println(this.val); if (this.right != null) { this.right.traverseInOrder(); } } // Visit left sub-tree, then right sub-tree and then the node public void traversePostOrder() { if (this.left != null) { this.left.traversePostOrder(); } if (this.right != null) { this.right.traversePostOrder(); } System.out.println(this.val); } }