linux gt9xx

    xiaoxiao2021-03-25  58

    /* drivers/input/touchscreen/gt9xx.c  *   * 2010 - 2013 Goodix Technology.  *   * This program is free software; you can redistribute it and/or modify  * it under the terms of the GNU General Public License as published by  * the Free Software Foundation; either version 2 of the License, or  * (at your option) any later version.  *   * This program is distributed in the hope that it will be a reference   * to you, when you are integrating the GOODiX's CTP IC into your system,   * but WITHOUT ANY WARRANTY; without even the implied warranty of   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   * General Public License for more details.  *   * Version: 2.0  * Authors: andrew@goodix.com, meta@goodix.com  * Release Date: 2013/04/25  * Revision record:  *      V1.0:     *          first Release. By Andrew, 2012/08/31   *      V1.2:  *          modify gtp_reset_guitar,slot report,tracking_id & 0x0F. By Andrew, 2012/10/15  *      V1.4:  *          modify gt9xx_update.c. By Andrew, 2012/12/12  *      V1.6:   *          1. new heartbeat/esd_protect mechanism(add external watchdog)  *          2. doze mode, sliding wakeup   *          3. 3 more cfg_group(GT9 Sensor_ID: 0~5)   *          3. config length verification  *          4. names & comments  *                  By Meta, 2013/03/11  *      V1.8:  *          1. pen/stylus identification   *          2. read double check & fixed config support  *          3. new esd & slide wakeup optimization  *                  By Meta, 2013/06/08  *      V2.0:  *          1. compatible with GT9XXF  *          2. send config after resume  *                  By Meta, 2013/08/06  */ #include "gt9xx.h" #if GTP_ICS_SLOT_REPORT     #include <linux/input/mt.h> #endif #include <linux/module.h> #include <linux/interrupt.h> #include <linux/input.h> #include <linux/i2c.h> #include <asm/uaccess.h> #include <linux/delay.h> #include <linux/slab.h>  #include <linux/irq.h> #include <linux/gpio_keys.h> #include <mach/gpio.h> #include <plat/gpio-cfg.h> #include <mach/regs-gpio.h> #include <linux/poll.h> #include <linux/cdev.h> #include <linux/miscdevice.h> //static const char *goodix_ts_name = "Goodix Capacitive TouchScreen"; static const char *goodix_ts_name = GTP_I2C_NAME;//"gzsd_ts"; static struct workqueue_struct *goodix_wq; struct i2c_client * i2c_connect_client = NULL;  u8 config[GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH]                 = {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff}; #if GTP_HAVE_TOUCH_KEY     static const u16 touch_key_array[] = GTP_KEY_TAB;     #define GTP_MAX_KEY_NUM  (sizeof(touch_key_array)/sizeof(touch_key_array[0]))      #if GTP_DEBUG_ON     static const int  key_codes[] = {KEY_HOME, KEY_BACK, KEY_MENU, KEY_SEARCH};     static const char *key_names[] = {"Key_Home", "Key_Back", "Key_Menu", "Key_Search"}; #endif      #endif static s8 gtp_i2c_test(struct i2c_client *client); void gtp_reset_guitar(struct i2c_client *client, s32 ms); s32 gtp_send_cfg(struct i2c_client *client); void gtp_int_sync(s32 ms); #ifdef CONFIG_HAS_EARLYSUSPEND static void goodix_ts_early_suspend(struct early_suspend *h); static void goodix_ts_late_resume(struct early_suspend *h); #endif   #if GTP_CREATE_WR_NODE extern s32 init_wr_node(struct i2c_client*); extern void uninit_wr_node(void); #endif #if GTP_AUTO_UPDATE extern u8 gup_init_update_proc(struct goodix_ts_data *); #endif #if GTP_ESD_PROTECT static struct delayed_work gtp_esd_check_work; static struct workqueue_struct * gtp_esd_check_workqueue = NULL; static void gtp_esd_check_func(struct work_struct *); static s32 gtp_init_ext_watchdog(struct i2c_client *client); void gtp_esd_switch(struct i2c_client *, s32); #endif //*********** For GT9XXF Start **********// #if GTP_COMPATIBLE_MODE extern s32 i2c_read_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len); extern s32 i2c_write_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len); extern s32 gup_clk_calibration(void); extern s32 gup_fw_download_proc(void *dir, u8 dwn_mode); extern u8 gup_check_fs_mounted(char *path_name); void gtp_recovery_reset(struct i2c_client *client); static s32 gtp_esd_recovery(struct i2c_client *client); s32 gtp_fw_startup(struct i2c_client *client); static s32 gtp_main_clk_proc(struct goodix_ts_data *ts); static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode); #endif static DECLARE_WAIT_QUEUE_HEAD(ts_waitq); #define NR_EVENTS 64 typedef unsigned TS_EVENT; static TS_EVENT events[NR_EVENTS]; static int evt_head, evt_tail; #define ts_evt_pending() ((volatile u8)(evt_head != evt_tail)) #define ts_evt_get() (events + evt_tail) #define ts_evt_pull() (evt_tail = (evt_tail + 1) & (NR_EVENTS - 1)) #define ts_evt_clear() (evt_head = evt_tail = 0) #define GPIO_INT S3C2410_GPG(4) #define GPIO_RESET S3C2410_GPF(5) #define IRQ IRQ_EINT(12) //#define GZSD_SELECT 1 #ifdef GZSD_SELECT #define TS_NUM 2 struct ts_i2c_data { struct i2c_client *client; struct delayed_work work; int irq; }; static int posx[5], posy[5]; static unsigned char buf[31]; static struct workqueue_struct *ts_wq; int ts_num = 0; unsigned ts_x[TS_NUM]; unsigned ts_y[TS_NUM]; int ts_down = 0; #endif static void ts_evt_add(unsigned x, unsigned y, unsigned down) { unsigned ts_event; int next_head; int check = 0; if(x > 795) x = 795; if(y > 475) y = 475; check = (x + y + down) & (0x0f); ts_event = ((x << 12) | (y)) | (down << 31) | (check << 24); next_head = (evt_head + 1) & (NR_EVENTS - 1); if (next_head != evt_tail) { events[evt_head] = ts_event; evt_head = next_head; /* wake up any read call */ if (waitqueue_active(&ts_waitq)) { wake_up_interruptible(&ts_waitq); } } else { /* drop the event and try to wakeup readers */ wake_up_interruptible(&ts_waitq); } return; } //********** For GT9XXF End **********// static int s3c_ts_open(struct inode *inode, struct file *filp) { /* flush event queue */ //ts_evt_clear(); GTP_INFO("s3c_ts_read1"); ts_evt_clear(); return 0; } static int s3c_ts_read(struct file *filp, char __user *buff, size_t count, loff_t *offp) { DECLARE_WAITQUEUE(wait, current); char *ptr = buff; int err = 0; add_wait_queue(&ts_waitq, &wait); while (count >= sizeof(TS_EVENT)) { err = -ERESTARTSYS; if (signal_pending(current)) break; if (ts_evt_pending()) { TS_EVENT *evt = ts_evt_get(); ts_evt_pull(); err = copy_to_user(ptr, evt, sizeof(TS_EVENT)); if (err) break; ptr += sizeof(TS_EVENT); count -= sizeof(TS_EVENT); continue; } set_current_state(TASK_INTERRUPTIBLE); err = -EAGAIN; if (filp->f_flags & O_NONBLOCK) break; schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&ts_waitq, &wait); return ptr == buff ? err : ptr - buff; } static unsigned int s3c_ts_poll( struct file *file, struct poll_table_struct *wait) { //GTP_INFO("s3c_ts_read2"); unsigned int mask = 0; poll_wait(file, &ts_waitq, wait); if (ts_evt_pending()) mask |= POLLIN | POLLRDNORM; return mask; } static struct file_operations dev_fops = { .owner = THIS_MODULE, .read = s3c_ts_read, .poll = s3c_ts_poll, .open = s3c_ts_open, }; #if GTP_SLIDE_WAKEUP typedef enum {     DOZE_DISABLED = 0,     DOZE_ENABLED = 1,     DOZE_WAKEUP = 2, }DOZE_T; static DOZE_T doze_status = DOZE_DISABLED; static s8 gtp_enter_doze(struct goodix_ts_data *ts); #endif static u8 chip_gt9xxs = 0;  // true if ic is gt9xxs, like gt915s u8 grp_cfg_version = 0; /******************************************************* Function:     Read data from the i2c slave device. Input:     client:     i2c device.     buf[0~1]:   read start address.     buf[2~len-1]:   read data buffer.     len:    GTP_ADDR_LENGTH + read bytes count Output:     numbers of i2c_msgs to transfer:        2: succeed, otherwise: failed *********************************************************/ s32 gtp_i2c_read(struct i2c_client *client, u8 *buf, s32 len) {     struct i2c_msg msgs[2];     s32 ret=-1;     s32 retries = 0;     GTP_DEBUG_FUNC();     msgs[0].flags = !I2C_M_RD;     msgs[0].addr  = client->addr;     msgs[0].len   = GTP_ADDR_LENGTH;     msgs[0].buf   = &buf[0];     //msgs[0].scl_rate = 300 * 1000;    // for Rockchip, etc.          msgs[1].flags = I2C_M_RD;     msgs[1].addr  = client->addr;     msgs[1].len   = len - GTP_ADDR_LENGTH;     msgs[1].buf   = &buf[GTP_ADDR_LENGTH];     //msgs[1].scl_rate = 300 * 1000;     while(retries < 5)     {         ret = i2c_transfer(client->adapter, msgs, 2);         if(ret == 2)break;         retries++;     }     if((retries >= 5))     {     #if GTP_COMPATIBLE_MODE         struct goodix_ts_data *ts = i2c_get_clientdata(client);     #endif              #if GTP_SLIDE_WAKEUP         // reset chip would quit doze mode         if (DOZE_ENABLED == doze_status)         {             return ret;         }     #endif         GTP_ERROR("I2C Read: 0xX, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);     #if GTP_COMPATIBLE_MODE         if (CHIP_TYPE_GT9F == ts->chip_type)         {             gtp_recovery_reset(client);         }         else     #endif         {             gtp_reset_guitar(client, 10);           }     }     return ret; } #define DEVICE_NAME "touchscreen" static struct miscdevice misc = { .minor = 180, .name = DEVICE_NAME, .fops = &dev_fops, }; /******************************************************* Function:     Write data to the i2c slave device. Input:     client:     i2c device.     buf[0~1]:   write start address.     buf[2~len-1]:   data buffer     len:    GTP_ADDR_LENGTH + write bytes count Output:     numbers of i2c_msgs to transfer:          1: succeed, otherwise: failed *********************************************************/ s32 gtp_i2c_write(struct i2c_client *client,u8 *buf,s32 len) {     struct i2c_msg msg;     s32 ret = -1;     s32 retries = 0;     GTP_DEBUG_FUNC();     msg.flags = !I2C_M_RD;     msg.addr  = client->addr;     msg.len   = len;     msg.buf   = buf;     //msg.scl_rate = 300 * 1000;    // for Rockchip, etc     while(retries < 5)     {         ret = i2c_transfer(client->adapter, &msg, 1);         if (ret == 1)break;         retries++;     }     if((retries >= 5))     {     #if GTP_COMPATIBLE_MODE         struct goodix_ts_data *ts = i2c_get_clientdata(client);     #endif          #if GTP_SLIDE_WAKEUP         if (DOZE_ENABLED == doze_status)         {             return ret;         }     #endif         GTP_ERROR("I2C Write: 0xX, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);     #if GTP_COMPATIBLE_MODE         if (CHIP_TYPE_GT9F == ts->chip_type)         {             gtp_recovery_reset(client);         }         else     #endif         {             gtp_reset_guitar(client, 10);           }     }     return ret; } /******************************************************* Function:     i2c read twice, compare the results Input:     client:  i2c device     addr:    operate address     rxbuf:   read data to store, if compare successful     len:     bytes to read Output:     FAIL:    read failed     SUCCESS: read successful *********************************************************/ s32 gtp_i2c_read_dbl_check(struct i2c_client *client, u16 addr, u8 *rxbuf, int len) {     u8 buf[16] = {0};     u8 confirm_buf[16] = {0};     u8 retry = 0;          while (retry++ < 3)     {         memset(buf, 0xAA, 16);         buf[0] = (u8)(addr >> 8);         buf[1] = (u8)(addr & 0xFF);         gtp_i2c_read(client, buf, len + 2);                  memset(confirm_buf, 0xAB, 16);         confirm_buf[0] = (u8)(addr >> 8);         confirm_buf[1] = (u8)(addr & 0xFF);         gtp_i2c_read(client, confirm_buf, len + 2);                  if (!memcmp(buf, confirm_buf, len+2))         {             memcpy(rxbuf, confirm_buf+2, len);             return SUCCESS;         }     }         GTP_ERROR("I2C read 0xX, %d bytes, double check failed!", addr, len);     return FAIL; } /******************************************************* Function:     Send config. Input:     client: i2c device. Output:     result of i2c write operation.          1: succeed, otherwise: failed *********************************************************/ s32 gtp_send_cfg(struct i2c_client *client) {     s32 ret = 2; #if GTP_DRIVER_SEND_CFG     s32 retry = 0;     struct goodix_ts_data *ts = i2c_get_clientdata(client);     if (ts->fixed_cfg)     {         GTP_INFO("Ic fixed config, no config sent!");         return 0;     }     else if (ts->pnl_init_error)     {         GTP_INFO("Error occured in init_panel, no config sent");         return 0;     }          GTP_INFO("Driver send config.");     for (retry = 0; retry < 5; retry++)     {         ret = gtp_i2c_write(client, config , GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH);         if (ret > 0)         {             break;         }     } #endif     return ret; } /******************************************************* Function:     Disable irq function Input:     ts: goodix i2c_client private data Output:     None. *********************************************************/ void gtp_irq_disable(struct goodix_ts_data *ts) {     unsigned long irqflags;     GTP_DEBUG_FUNC();     spin_lock_irqsave(&ts->irq_lock, irqflags);     if (!ts->irq_is_disable)     {         ts->irq_is_disable = 1;          disable_irq_nosync(ts->client->irq);     }     spin_unlock_irqrestore(&ts->irq_lock, irqflags); } /******************************************************* Function:     Enable irq function Input:     ts: goodix i2c_client private data Output:     None. *********************************************************/ void gtp_irq_enable(struct goodix_ts_data *ts) {     unsigned long irqflags = 0;     GTP_DEBUG_FUNC();      //printk("%s\n", __func__);     spin_lock_irqsave(&ts->irq_lock, irqflags);     if (ts->irq_is_disable)      { //printk("call enable_irq\n");         enable_irq(ts->client->irq);         ts->irq_is_disable = 0;      }     spin_unlock_irqrestore(&ts->irq_lock, irqflags); } /******************************************************* Function:     Report touch point event  Input:     ts: goodix i2c_client private data     id: trackId     x:  input x coordinate     y:  input y coordinate     w:  input pressure Output:     None. *********************************************************/ static void gtp_touch_down(struct goodix_ts_data* ts,s32 id,s32 x,s32 y,s32 w) { #if GTP_CHANGE_X2Y     GTP_SWAP(x, y); #endif #if GTP_CHANGE_ROTATE180     GTP_ROTATE(x, y, ts->abs_x_max, ts->abs_y_max); #endif     //TNN, sce case //    x = ts->abs_x_max - x; //    y = ts->abs_y_max - y; #if GTP_ICS_SLOT_REPORT     input_mt_slot(ts->input_dev, id);     input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);     input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);     input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);     input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);     input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w); #else #ifdef GZSD_LINUX x = GTP_WARP_X(GTP_MAX_WIDTH,x); y = GTP_WARP_Y(GTP_MAX_HEIGHT,y); input_report_abs(ts->input_dev, ABS_X, x); input_report_abs(ts->input_dev, ABS_Y, y); input_report_abs(ts->input_dev, ABS_PRESSURE, 1); input_report_key(ts->input_dev, BTN_TOUCH, 1); input_sync(ts->input_dev); //GTP_DEBUG("ID:%d, X:%d, Y:%d, W:%d", id, x, 480-y, w); ts_evt_add(x,480-y,1);     msleep(5);     queue_work(goodix_wq, &ts->work);      #else     input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);     input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);     input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);     input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);     input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);     input_mt_sync(ts->input_dev); #endif #endif     //GTP_DEBUG("ID:%d, X:%d, Y:%d, W:%d", id, x, y, w); } /******************************************************* Function:     Report touch release event Input:     ts: goodix i2c_client private data Output:     None. *********************************************************/ static void gtp_touch_up(struct goodix_ts_data* ts, s32 id) { #if GTP_ICS_SLOT_REPORT     input_mt_slot(ts->input_dev, id);     input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, -1);     GTP_DEBUG("Touch id[-] release!", id); #else #ifdef GZSD_LINUX input_report_abs(ts->input_dev, ABS_PRESSURE, 0); ts_evt_add(0,0,0); //input_report_key(ts->input_dev, BTN_TOUCH, 0); #else     input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0);     input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0);     input_mt_sync(ts->input_dev); #endif #endif } static irqreturn_t ts_ts_isr(int irq, void *dev_id) { struct ts_i2c_data *tsdata = (struct ts_i2c_data *)dev_id; disable_irq_nosync(irq); ts_evt_clear(); queue_work(ts_wq, &tsdata->work.work); return IRQ_HANDLED; } static void ts_poscheck(struct work_struct *work) { struct ts_i2c_data *tsdata = container_of(work,struct ts_i2c_data,work.work); int ret; int num; if(gpio_get_value(GPIO_INT)) { msleep(5); if(gpio_get_value(GPIO_INT)) { ts_evt_add(0,0,0); enable_irq(tsdata->irq); } else goto TS_READ; } else {     TS_READ: ret = i2c_smbus_read_i2c_block_data(tsdata->client, 0, sizeof(buf), buf); num =  buf[2] & 0x07; if (num == 1) { posx[0] = (s16)(buf[3] & 0x0F)<<8 | (s16)buf[4];   posy[0] = (s16)(buf[5] & 0x0F)<<8 | (s16)buf[6];  ts_evt_add((unsigned long)posx[0],(unsigned long)posy[0],1); } else ts_evt_add(0,0,0); msleep(5); queue_work(ts_wq, &tsdata->work.work); } } /******************************************************* Function:     Goodix touchscreen work function Input:     work: work struct of goodix_workqueue Output:     None. *********************************************************/ static void goodix_ts_work_func(struct work_struct *work) {     u8  end_cmd[3] = {GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF, 0};     u8  point_data[2 + 1 + 8 * GTP_MAX_TOUCH + 1]={GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF};     u8  touch_num = 0;     u8  finger = 0;     static u16 pre_touch = 0;     static u8 pre_key = 0; #if GTP_WITH_PEN     static u8 pre_pen = 0; #endif     u8  key_value = 0;     u8* coor_data = NULL;     s32 input_x = 0;     s32 input_y = 0;     s32 input_w = 0;     s32 id = 0;     s32 i  = 0;     s32 ret = -1;     struct goodix_ts_data *ts = NULL;     u8 p_main_clk[6] = {71,71,71,71,71,157};     u8 p_bak_ref[276]={0};     p_bak_ref[275]=1; #if GTP_COMPATIBLE_MODE     u8 rqst_buf[3] = {0x80, 0x43};  // for GT9XXF #endif #if GTP_SLIDE_WAKEUP     u8 doze_buf[3] = {0x81, 0x4B}; #endif     GTP_DEBUG_FUNC(); //printk("+%s\n",__func__);     ts = container_of(work, struct goodix_ts_data, work);     if (ts->enter_update)     {         return;     } #if GTP_SLIDE_WAKEUP     if (DOZE_ENABLED == doze_status)     {                        ret = gtp_i2c_read(i2c_connect_client, doze_buf, 3);         GTP_DEBUG("0x814B = 0xX", doze_buf[2]);         if (ret > 0)         {                            if (doze_buf[2] == 0xAA)             {                 GTP_INFO("Forward slide to light up the screen!");                 doze_status = DOZE_WAKEUP;                 input_report_key(ts->input_dev, KEY_POWER, 1);                 input_sync(ts->input_dev);                 input_report_key(ts->input_dev, KEY_POWER, 0);                 input_sync(ts->input_dev);                 // clear 0x814B                 doze_buf[2] = 0x00;                 gtp_i2c_write(i2c_connect_client, doze_buf, 3);             }             else if (doze_buf[2] == 0xBB)             {                 GTP_INFO("Backward slide to light up the screen!");                 doze_status = DOZE_WAKEUP;                 input_report_key(ts->input_dev, KEY_POWER, 1);                 input_sync(ts->input_dev);                 input_report_key(ts->input_dev, KEY_POWER, 0);                 input_sync(ts->input_dev);                 // clear 0x814B                 doze_buf[2] = 0x00;                 gtp_i2c_write(i2c_connect_client, doze_buf, 3);             }             else if (0xC0 == (doze_buf[2] & 0xC0))             {                 GTP_INFO("Double click to light up the screen!");                 doze_status = DOZE_WAKEUP;                 input_report_key(ts->input_dev, KEY_POWER, 1);                 input_sync(ts->input_dev);                 input_report_key(ts->input_dev, KEY_POWER, 0);                 input_sync(ts->input_dev);                 // clear 0x814B                 doze_buf[2] = 0x00;                 gtp_i2c_write(i2c_connect_client, doze_buf, 3);             }             else             {                 gtp_enter_doze(ts);             }         }         if (ts->use_irq)         {             gtp_irq_enable(ts);         }         return;     } #endif     ret = gtp_i2c_read(ts->client, point_data, 12);     if (ret < 0)     {         GTP_ERROR("I2C transfer error. errno:%d\n ", ret);         goto exit_work_func;     }     finger = point_data[GTP_ADDR_LENGTH];     #if GTP_COMPATIBLE_MODE     // GT9XXF     if ((finger == 0x00) && (CHIP_TYPE_GT9F == ts->chip_type))     // request arrived     {         ret = gtp_i2c_read(ts->client, rqst_buf, 3);         if (ret < 0)         {            GTP_ERROR("Read request status error!");            goto exit_work_func;         }                   switch (rqst_buf[2] & 0x0F)         {         case GTP_RQST_CONFIG:             GTP_INFO("Request for config."); //for(i=0;i<242;i++) //if((i)==0) // GTP_INFO("0x%x\r", config[i-1]); //else   //GTP_INFO("0x%x", config[i]);             ret = gtp_send_cfg(ts->client);             if (ret < 0)             {                 GTP_ERROR("Request for config unresponded!");             }             else             {                 rqst_buf[2] = GTP_RQST_RESPONDED;                 gtp_i2c_write(ts->client, rqst_buf, 3);                 //GTP_INFO("Request for config responded!");             }             break;                      case GTP_RQST_BAK_REF:             GTP_INFO("Request for backup reference.");             ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_SEND);             if (SUCCESS == ret)             {                 rqst_buf[2] = GTP_RQST_RESPONDED;                 gtp_i2c_write(ts->client, rqst_buf, 3);                 GTP_INFO("Request for backup reference responded!");             }             else             {                 GTP_ERROR("Requeset for backup reference unresponed!");             }             break;                      case GTP_RQST_RESET:             GTP_INFO("Request for reset.");             gtp_recovery_reset(ts->client);             break;                      case GTP_RQST_MAIN_CLOCK: //break; i2c_write_bytes(ts->client, GTP_REG_MAIN_CLK, p_main_clk, 6); ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);  rqst_buf[2] = GTP_RQST_RESPONDED; gtp_i2c_write(ts->client, rqst_buf, 3); break;             GTP_INFO("Request for main clock.");             ts->rqst_processing = 1;             ret = gtp_main_clk_proc(ts);             if (FAIL == ret)             {                 GTP_ERROR("Request for main clock unresponded!");             }             else             {                 GTP_INFO("Request for main clock responded!");                 rqst_buf[2] = GTP_RQST_RESPONDED;                 gtp_i2c_write(ts->client, rqst_buf, 3);                 ts->rqst_processing = 0;                 ts->clk_chk_fs_times = 0;             }             break;                      case GTP_RQST_IDLE:         default:             break;         }     } #endif     if((finger & 0x80) == 0)     {         goto exit_work_func;     }     touch_num = finger & 0x0f;     if (touch_num > GTP_MAX_TOUCH)     {         goto exit_work_func;     }     if (touch_num > 1)     {         u8 buf[8 * GTP_MAX_TOUCH] = {(GTP_READ_COOR_ADDR + 10) >> 8, (GTP_READ_COOR_ADDR + 10) & 0xff};         ret = gtp_i2c_read(ts->client, buf, 2 + 8 * (touch_num - 1));          memcpy(&point_data[12], &buf[2], 8 * (touch_num - 1));     } #if GTP_HAVE_TOUCH_KEY     key_value = point_data[3 + 8 * touch_num];          if(key_value || pre_key)     {         for (i = 0; i < GTP_MAX_KEY_NUM; i++)         {         #if GTP_DEBUG_ON             for (ret = 0; ret < 4; ++ret)             {                 if (key_codes[ret] == touch_key_array[i])                 {                     GTP_DEBUG("Key: %s %s", key_names[ret], (key_value & (0x01 << i)) ? "Down" : "Up");                     break;                 }             }         #endif             input_report_key(ts->input_dev, touch_key_array[i], key_value & (0x01<<i));            }         touch_num = 0;         pre_touch = 0;     } #endif     pre_key = key_value;     //GTP_DEBUG("pre_touch:x, finger:x.", pre_touch, finger); #if GTP_ICS_SLOT_REPORT #if GTP_WITH_PEN     if (pre_pen && (touch_num == 0))     {         GTP_DEBUG("Pen touch UP(Slot)!");         input_report_key(ts->input_dev, BTN_TOOL_PEN, 0);         input_mt_slot(ts->input_dev, 5);         input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, -1);         pre_pen = 0;     } #endif     if (pre_touch || touch_num)     {         s32 pos = 0;         u16 touch_index = 0;         u8 report_num = 0;         coor_data = &point_data[3];                  if(touch_num)         {             id = coor_data[pos] & 0x0F;                  #if GTP_WITH_PEN             id = coor_data[pos];             if ((id & 0x80))               {                 GTP_DEBUG("Pen touch DOWN(Slot)!");                 input_x  = coor_data[pos + 1] | (coor_data[pos + 2] << 8);                 input_y  = coor_data[pos + 3] | (coor_data[pos + 4] << 8);                 input_w  = coor_data[pos + 5] | (coor_data[pos + 6] << 8);                                  input_report_key(ts->input_dev, BTN_TOOL_PEN, 1);                 input_mt_slot(ts->input_dev, 5);                 input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, 5);                 input_report_abs(ts->input_dev, ABS_MT_POSITION_X, input_x);                 input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, input_y);                 input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, input_w);                 GTP_DEBUG("Pen/Stylus: (%d, %d)[%d]", input_x, input_y, input_w);                 pre_pen = 1;                 pre_touch = 0;             }             #endif                      touch_index |= (0x01<<id);         }                  GTP_DEBUG("id = %d,touch_index = 0x%x, pre_touch = 0x%x\n",id, touch_index,pre_touch);         for (i = 0; i < GTP_MAX_TOUCH; i++)         {         #if GTP_WITH_PEN             if (pre_pen == 1)             {                 break;             }         #endif                      if ((touch_index & (0x01<<i)))             {                 input_x  = coor_data[pos + 1] | (coor_data[pos + 2] << 8);                 input_y  = coor_data[pos + 3] | (coor_data[pos + 4] << 8);                 input_w  = coor_data[pos + 5] | (coor_data[pos + 6] << 8);                 gtp_touch_down(ts, id, input_x, input_y, input_w);                 pre_touch |= 0x01 << i;                                  report_num++;                 if (report_num < touch_num)                 {                     pos += 8;                     id = coor_data[pos] & 0x0F;                     touch_index |= (0x01<<id);                 }             }             else             {                 gtp_touch_up(ts, i);                 pre_touch &= ~(0x01 << i);             }         }     } #else     input_report_key(ts->input_dev, BTN_TOUCH, (touch_num || key_value));     if (touch_num)     {         for (i = 0; i < touch_num; i++)         {             coor_data = &point_data[i * 8 + 3];             id = coor_data[0] & 0x0F;             input_x  = coor_data[1] | (coor_data[2] << 8);             input_y  = coor_data[3] | (coor_data[4] << 8);             input_w  = coor_data[5] | (coor_data[6] << 8);                  #if GTP_WITH_PEN             id = coor_data[0];             if (id & 0x80)             {                 GTP_DEBUG("Pen touch DOWN!");                 input_report_key(ts->input_dev, BTN_TOOL_PEN, 1);                 pre_pen = 1;                 id = 0;                }         #endif                      gtp_touch_down(ts, id, input_x, input_y, input_w);         }     }     else if (pre_touch)     {          #if GTP_WITH_PEN         if (pre_pen == 1)         {             GTP_DEBUG("Pen touch UP!");             input_report_key(ts->input_dev, BTN_TOOL_PEN, 0);             pre_pen = 0;         }     #endif            //  GTP_DEBUG("Touch Release!");         gtp_touch_up(ts, 0);     }     pre_touch = touch_num; #endif     input_sync(ts->input_dev); exit_work_func:        if(!ts->gtp_rawdiff_mode)     {         ret = gtp_i2c_write(ts->client, end_cmd, 3);         if (ret < 0)         {             GTP_INFO("I2C write end_cmd error!");         }     }     if (ts->use_irq)     {         gtp_irq_enable(ts);     } } /******************************************************* Function:     Timer interrupt service routine for polling mode. Input:     timer: timer struct pointer Output:     Timer work mode.          HRTIMER_NORESTART: no restart mode *********************************************************/ static enum hrtimer_restart goodix_ts_timer_handler(struct hrtimer *timer) {     struct goodix_ts_data *ts = container_of(timer, struct goodix_ts_data, timer);     GTP_DEBUG_FUNC();     queue_work(goodix_wq, &ts->work);     hrtimer_start(&ts->timer, ktime_set(0, (GTP_POLL_TIME+6)*1000000), HRTIMER_MODE_REL);     return HRTIMER_NORESTART; } /******************************************************* Function:     External interrupt service routine for interrupt mode. Input:     irq:  interrupt number.     dev_id: private data pointer Output:     Handle Result.         IRQ_HANDLED: interrupt handled successfully *********************************************************/ static irqreturn_t goodix_ts_irq_handler(int irq, void *dev_id) {     struct goodix_ts_data *ts = dev_id;     GTP_DEBUG_FUNC(); //printk("+%s\n", __func__);       gtp_irq_disable(ts);     queue_work(goodix_wq, &ts->work);          return IRQ_HANDLED; } /******************************************************* Function:     Synchronization. Input:     ms: synchronization time in millisecond. Output:     None. *******************************************************/ void gtp_int_sync(s32 ms) {     GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);     msleep(ms);     GTP_GPIO_AS_INT(GTP_INT_PORT); } /******************************************************* Function:     Reset chip. Input:     ms: reset time in millisecond Output:     None. *******************************************************/ void gtp_reset_guitar(struct i2c_client *client, s32 ms) { #if GTP_COMPATIBLE_MODE     struct goodix_ts_data *ts = i2c_get_clientdata(client); #endif         GTP_DEBUG_FUNC();     GTP_INFO("Guitar reset"); #if 1 //for TNN     GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);   // begin select I2C slave addr     msleep(ms);                         // T2: > 10ms #endif     // HIGH: 0x28/0x29, LOW: 0xBA/0xBB     GTP_GPIO_OUTPUT(GTP_INT_PORT, client->addr == 0x14); #if 1  //for TNN     msleep(2);                          // T3: > 100us     GTP_GPIO_OUTPUT(GTP_RST_PORT, 1);          msleep(6);                          // T4: > 5ms #if 0 printk("GTP_RST_PORT is high\n"); while(1) {     msleep(2);                          // T3: > 100us     GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);     msleep(2);                          // T3: > 100us     GTP_GPIO_OUTPUT(GTP_RST_PORT, 1); } #endif     //GTP_GPIO_AS_INPUT(GTP_RST_PORT);    // end select I2C slave addr #endif #if GTP_COMPATIBLE_MODE     if (CHIP_TYPE_GT9F == ts->chip_type)     {         return;     } #endif     gtp_int_sync(50);   #if GTP_ESD_PROTECT     gtp_init_ext_watchdog(client); #endif } #if GTP_SLIDE_WAKEUP /******************************************************* Function:     Enter doze mode for sliding wakeup. Input:     ts: goodix tp private data Output:     1: succeed, otherwise failed *******************************************************/ static s8 gtp_enter_doze(struct goodix_ts_data *ts) {     s8 ret = -1;     s8 retry = 0;     u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 8};     GTP_DEBUG_FUNC(); #if GTP_DBL_CLK_WAKEUP     i2c_control_buf[2] = 0x09; #endif     gtp_irq_disable(ts);          GTP_DEBUG("Entering doze mode.");     while(retry++ < 5)     {         i2c_control_buf[0] = 0x80;         i2c_control_buf[1] = 0x46;         ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);         if (ret < 0)         {             GTP_DEBUG("failed to set doze flag into 0x8046, %d", retry);             continue;         }         i2c_control_buf[0] = 0x80;         i2c_control_buf[1] = 0x40;         ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);         if (ret > 0)         {             doze_status = DOZE_ENABLED;             GTP_INFO("GTP has been working in doze mode!");             gtp_irq_enable(ts);             return ret;         }         msleep(10);     }     GTP_ERROR("GTP send doze cmd failed.");     gtp_irq_enable(ts);     return ret; } #else  /******************************************************* Function:     Enter sleep mode. Input:     ts: private data. Output:     Executive outcomes.        1: succeed, otherwise failed. *******************************************************/ static s8 gtp_enter_sleep(struct goodix_ts_data * ts) {     s8 ret = -1;     s8 retry = 0;     u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 5}; #if GTP_COMPATIBLE_MODE     u8 status_buf[3] = {0x80, 0x44}; #endif          GTP_DEBUG_FUNC();      #if GTP_COMPATIBLE_MODE     if (CHIP_TYPE_GT9F == ts->chip_type)     {         // GT9XXF: host interact with ic         ret = gtp_i2c_read(ts->client, status_buf, 3);         if (ret < 0)         {             GTP_ERROR("failed to get backup-reference status");         }                  if (status_buf[2] & 0x80)         {             ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_STORE);             if (FAIL == ret)             {                 GTP_ERROR("failed to store bak_ref");             }         }     } #endif     GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);     msleep(5);          while(retry++ < 5)     {         ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);         if (ret > 0)         {             GTP_INFO("GTP enter sleep!");                          return ret;         }         msleep(10);     }     GTP_ERROR("GTP send sleep cmd failed.");     return ret; } #endif  /******************************************************* Function:     Wakeup from sleep. Input:     ts: private data. Output:     Executive outcomes.         >0: succeed, otherwise: failed. *******************************************************/ static s8 gtp_wakeup_sleep(struct goodix_ts_data * ts) {     u8 retry = 0;     s8 ret = -1;          GTP_DEBUG_FUNC(); #if GTP_COMPATIBLE_MODE     if (CHIP_TYPE_GT9F == ts->chip_type)     {         u8 opr_buf[3] = {0x41, 0x80};                  GTP_GPIO_OUTPUT(GTP_INT_PORT, 1);         msleep(5);              for (retry = 0; retry < 20; ++retry)         {             // hold ss51 & dsp             opr_buf[2] = 0x0C;             ret = gtp_i2c_write(ts->client, opr_buf, 3);             if (FAIL == ret)             {                 GTP_ERROR("failed to hold ss51 & dsp!");                 continue;             }             opr_buf[2] = 0x00;             ret = gtp_i2c_read(ts->client, opr_buf, 3);             if (FAIL == ret)             {                 GTP_ERROR("failed to get ss51 & dsp status!");                 continue;             }             if (0x0C != opr_buf[2])             {                 GTP_DEBUG("ss51 & dsp not been hold, %d", retry+1);                 continue;             }             GTP_DEBUG("ss51 & dsp confirmed hold");                          ret = gtp_fw_startup(ts->client);             if (FAIL == ret)             {                 GTP_ERROR("failed to startup GT9XXF, process recovery");                 gtp_esd_recovery(ts->client);             }             break;         }         if (retry >= 10)         {             GTP_ERROR("failed to wakeup, processing esd recovery");             gtp_esd_recovery(ts->client);         }         else         {             GTP_INFO("GT9XXF gtp wakeup success");         }         return ret;     } #endif #if GTP_POWER_CTRL_SLEEP     while(retry++ < 5)     {         gtp_reset_guitar(ts->client, 20);                  GTP_INFO("GTP wakeup sleep.");         return 1;     } #else     while(retry++ < 10)     {     #if GTP_SLIDE_WAKEUP         if (DOZE_WAKEUP != doze_status)       // wakeup not by slide          {             GTP_DEBUG("wakeup by power, reset guitar");             doze_status = DOZE_DISABLED;                gtp_irq_disable(ts);             gtp_reset_guitar(ts->client, 10);             gtp_irq_enable(ts);         }         else              // wakeup by slide          {             GTP_DEBUG("wakeup by slide/double-click, no reset guitar");             doze_status = DOZE_DISABLED;         #if GTP_ESD_PROTECT             gtp_init_ext_watchdog(ts->client);         #endif         }              #else         if (chip_gt9xxs == 1)         {            gtp_reset_guitar(ts->client, 10);         }         else         {             GTP_GPIO_OUTPUT(GTP_INT_PORT, 1);             msleep(5);         }     #endif              ret = gtp_i2c_test(ts->client);         if (ret > 0)         {             GTP_INFO("GTP wakeup sleep.");                      #if (!GTP_SLIDE_WAKEUP)             if (chip_gt9xxs == 0)             {                 gtp_int_sync(25);             #if GTP_ESD_PROTECT                 gtp_init_ext_watchdog(ts->client);             #endif             }         #endif                          return ret;         }         gtp_reset_guitar(ts->client, 20);     } #endif     GTP_ERROR("GTP wakeup sleep failed.");     return ret; } #if GTP_DRIVER_SEND_CFG static s32 gtp_get_info(struct goodix_ts_data *ts) {     u8 opr_buf[6] = {0};     s32 ret = 0;          opr_buf[0] = (u8)((GTP_REG_CONFIG_DATA+1) >> 8);     opr_buf[1] = (u8)((GTP_REG_CONFIG_DATA+1) & 0xFF);          ret = gtp_i2c_read(ts->client, opr_buf, 6);     if (ret < 0)     {         return FAIL;     }          ts->abs_x_max = (opr_buf[3] << 8) + opr_buf[2];     ts->abs_y_max = (opr_buf[5] << 8) + opr_buf[4];          opr_buf[0] = (u8)((GTP_REG_CONFIG_DATA+6) >> 8);     opr_buf[1] = (u8)((GTP_REG_CONFIG_DATA+6) & 0xFF);          ret = gtp_i2c_read(ts->client, opr_buf, 3);     if (ret < 0)     {         return FAIL;     }     ts->int_trigger_type = opr_buf[2] & 0x03;          GTP_INFO("X_MAX = %d, Y_MAX = %d, TRIGGER = 0xx",             ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);          return SUCCESS;     } #endif  /******************************************************* Function:     Initialize gtp. Input:     ts: goodix private data Output:     Executive outcomes.         0: succeed, otherwise: failed *******************************************************/ static s32 gtp_init_panel(struct goodix_ts_data *ts) {     s32 ret = -1; #if GTP_DRIVER_SEND_CFG     s32 i = 0;     u8 check_sum = 0;     u8 opr_buf[16] = {0};     u8 sensor_id = 0;           u8 cfg_info_group1[] = CTP_CFG_GROUP1;     u8 cfg_info_group2[] = CTP_CFG_GROUP2;     u8 cfg_info_group3[] = CTP_CFG_GROUP3;     u8 cfg_info_group4[] = CTP_CFG_GROUP4;     u8 cfg_info_group5[] = CTP_CFG_GROUP5;     u8 cfg_info_group6[] = CTP_CFG_GROUP6;     u8 *send_cfg_buf[] = {cfg_info_group1, cfg_info_group2, cfg_info_group3,                         cfg_info_group4, cfg_info_group5, cfg_info_group6};     u8 cfg_info_len[] = { CFG_GROUP_LEN(cfg_info_group1),                           CFG_GROUP_LEN(cfg_info_group2),                           CFG_GROUP_LEN(cfg_info_group3),                           CFG_GROUP_LEN(cfg_info_group4),                           CFG_GROUP_LEN(cfg_info_group5),                           CFG_GROUP_LEN(cfg_info_group6)};     GTP_DEBUG_FUNC();     GTP_DEBUG("Config Groups\' Lengths: %d, %d, %d, %d, %d, %d",          cfg_info_len[0], cfg_info_len[1], cfg_info_len[2], cfg_info_len[3],         cfg_info_len[4], cfg_info_len[5]);    // memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);   //  memcpy(&config[GTP_ADDR_LENGTH], send_cfg_buf[0], 228); //gtp_send_cfg(ts->client);  //   return 0; #if GTP_COMPATIBLE_MODE     if (CHIP_TYPE_GT9F == ts->chip_type)     {         ts->fw_error = 0;     }     else #endif     {         ret = gtp_i2c_read_dbl_check(ts->client, 0x41E4, opr_buf, 1);         if (SUCCESS == ret)          {             if (opr_buf[0] != 0xBE)             {                // ts->fw_error = 1;                 //GTP_ERROR("Firmware error, no config sent!");                  GTP_ERROR("Firmware error, no config sent! 0x%x",opr_buf[0]); // return -1;             }         }     }     if ((!cfg_info_len[1]) && (!cfg_info_len[2]) &&          (!cfg_info_len[3]) && (!cfg_info_len[4]) &&          (!cfg_info_len[5]))     {         sensor_id = 0;      }     else     {     #if GTP_COMPATIBLE_MODE         msleep(50);     #endif         ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_SENSOR_ID, &sensor_id, 1);         if (SUCCESS == ret)         {             if (sensor_id >= 0x06)             {                 GTP_ERROR("Invalid sensor_id(0xX), No Config Sent!", sensor_id);                 ts->pnl_init_error = 1;             #if GTP_COMPATIBLE_MODE                 if (CHIP_TYPE_GT9F == ts->chip_type)                 {                     return -1;                 }                 else             #endif                 {                     gtp_get_info(ts);                 }                 return 0;             }         }         else         {             GTP_ERROR("Failed to get sensor_id, No config sent!");             ts->pnl_init_error = 1;             return -1;         }         GTP_INFO("Sensor_ID: %d", sensor_id);     }     ts->gtp_cfg_len = cfg_info_len[sensor_id];     GTP_INFO("CTP_CONFIG_GROUP%d used, config length: %d", sensor_id + 1, ts->gtp_cfg_len);          if (ts->gtp_cfg_len < GTP_CONFIG_MIN_LENGTH)     {         GTP_ERROR("Config Group%d is INVALID CONFIG GROUP(Len: %d)! NO Config Sent! You need to check you header file CFG_GROUP section!", sensor_id+1, ts->gtp_cfg_len);         ts->pnl_init_error = 1;         return -1;     } #if GTP_COMPATIBLE_MODE     if (CHIP_TYPE_GT9F == ts->chip_type)     {         ts->fixed_cfg = 0;     }     else #endif     {         ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CONFIG_DATA, &opr_buf[0], 1);                  if (ret == SUCCESS)         {             GTP_DEBUG("CFG_GROUP%d Config Version: %d, 0xX; IC Config Version: %d, 0xX", sensor_id+1,                          send_cfg_buf[sensor_id][0], send_cfg_buf[sensor_id][0], opr_buf[0], opr_buf[0]);                          if (opr_buf[0] < 90)                 {                 grp_cfg_version = send_cfg_buf[sensor_id][0];       // backup group config version                 send_cfg_buf[sensor_id][0] = 0x00;                 ts->fixed_cfg = 0;             }             else        // treated as fixed config, not send config             {                 GTP_INFO("Ic fixed config with config version(%d, 0xX)", opr_buf[0], opr_buf[0]);                 ts->fixed_cfg = 1;                 gtp_get_info(ts);                 return 0;             }         }         else         {             GTP_ERROR("Failed to get ic config version!No config sent!");             return -1;         }     }          memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);     memcpy(&config[GTP_ADDR_LENGTH], send_cfg_buf[sensor_id], ts->gtp_cfg_len); #if GTP_CUSTOM_CFG     config[RESOLUTION_LOC]     = (u8)GTP_MAX_WIDTH;     config[RESOLUTION_LOC + 1] = (u8)(GTP_MAX_WIDTH>>8);     config[RESOLUTION_LOC + 2] = (u8)GTP_MAX_HEIGHT;     config[RESOLUTION_LOC + 3] = (u8)(GTP_MAX_HEIGHT>>8);          if (GTP_INT_TRIGGER == 0)  //RISING     {         config[TRIGGER_LOC] &= 0xfe;      }     else if (GTP_INT_TRIGGER == 1)  //FALLING     {         config[TRIGGER_LOC] |= 0x01;     } #endif  // GTP_CUSTOM_CFG          check_sum = 0;     for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++)     {         check_sum += config[i];     }     config[ts->gtp_cfg_len] = (~check_sum) + 1; #else // driver not send config     ts->gtp_cfg_len = GTP_CONFIG_MAX_LENGTH;     ret = gtp_i2c_read(ts->client, config, ts->gtp_cfg_len + GTP_ADDR_LENGTH);     if (ret < 0)     {         GTP_ERROR("Read Config Failed, Using Default Resolution & INT Trigger!");         ts->abs_x_max = GTP_MAX_WIDTH;         ts->abs_y_max = GTP_MAX_HEIGHT;         ts->int_trigger_type = GTP_INT_TRIGGER;     }      #endif // GTP_DRIVER_SEND_CFG     if ((ts->abs_x_max == 0) && (ts->abs_y_max == 0))     {         ts->abs_x_max = (config[RESOLUTION_LOC + 1] << 8) + config[RESOLUTION_LOC];         ts->abs_y_max = (config[RESOLUTION_LOC + 3] << 8) + config[RESOLUTION_LOC + 2];         ts->int_trigger_type = (config[TRIGGER_LOC]) & 0x03;      } #if GTP_COMPATIBLE_MODE     if (CHIP_TYPE_GT9F == ts->chip_type)     {         u8 sensor_num = 0;         u8 driver_num = 0;         u8 have_key = 0;                  have_key = (config[GTP_REG_HAVE_KEY - GTP_REG_CONFIG_DATA + 2] & 0x01);                  if (1 == ts->is_950)         {             driver_num = config[GTP_REG_MATRIX_DRVNUM - GTP_REG_CONFIG_DATA + 2];             sensor_num = config[GTP_REG_MATRIX_SENNUM - GTP_REG_CONFIG_DATA + 2];             if (have_key)             {                 driver_num--;             }             ts->bak_ref_len = (driver_num * (sensor_num - 1) + 2) * 2 * 6;         }         else         {             driver_num = (config[CFG_LOC_DRVA_NUM] & 0x1F) + (config[CFG_LOC_DRVB_NUM]&0x1F);             if (have_key)             {                 driver_num--;             }             sensor_num = (config[CFG_LOC_SENS_NUM] & 0x0F) + ((config[CFG_LOC_SENS_NUM] >> 4) & 0x0F);             ts->bak_ref_len = (driver_num * (sensor_num - 2) + 2) * 2;         }              GTP_INFO("Drv * Sen: %d * %d(key: %d), X_MAX: %d, Y_MAX: %d, TRIGGER: 0xx",            driver_num, sensor_num, have_key, ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);         return 0;     }     else #endif     {     #if GTP_DRIVER_SEND_CFG for(i=1;i<=228;i++) if((i)==0) GTP_INFO("0x%x\r", config[i]); else   GTP_INFO("0x%x", config[i]);         ret = gtp_send_cfg(ts->client);         if (ret < 0)         {             GTP_ERROR("Send config error.");         }         // set config version to CTP_CFG_GROUP, for resume to send config         config[GTP_ADDR_LENGTH] = grp_cfg_version;         check_sum = 0;         for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++)         {             check_sum += config[i];         }         config[ts->gtp_cfg_len] = (~check_sum) + 1;     #endif         GTP_INFO("X_MAX: %d, Y_MAX: %d, TRIGGER: 0xx", ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);     }          msleep(10);     return 0; } /******************************************************* Function:     Read chip version. Input:     client:  i2c device     version: buffer to keep ic firmware version Output:     read operation return.         2: succeed, otherwise: failed *******************************************************/ s32 gtp_read_version(struct i2c_client *client, u16* version) {     s32 ret = -1;     u8 buf[8] = {GTP_REG_VERSION >> 8, GTP_REG_VERSION & 0xff};     GTP_DEBUG_FUNC();     ret = gtp_i2c_read(client, buf, sizeof(buf));     if (ret < 0)     {         GTP_ERROR("GTP read version failed");         return ret;     }     if (version)     {         *version = (buf[7] << 8) | buf[6];     }          if (buf[5] == 0x00)     {         GTP_INFO("IC Version: %c%c%c_xx", buf[2], buf[3], buf[4], buf[7], buf[6]);     }     else     {         if (buf[5] == 'S' || buf[5] == 's')         {             chip_gt9xxs = 1;         }         GTP_INFO("IC Version: %c%c%c%c_xx", buf[2], buf[3], buf[4], buf[5], buf[7], buf[6]);     }     return ret; } /******************************************************* Function:     I2c test Function. Input:     client:i2c client. Output:     Executive outcomes.         2: succeed, otherwise failed. *******************************************************/ static s8 gtp_i2c_test(struct i2c_client *client) {     u8 test[3] = {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};     u8 retry = 0;     s8 ret = -1;        GTP_DEBUG_FUNC();        while(retry++ < 5)     {         ret = gtp_i2c_read(client, test, 3);         if (ret > 0)         {             return ret;         }         GTP_ERROR("GTP i2c test failed time %d.",retry);         msleep(10);     }     return ret; } /******************************************************* Function:     Request gpio(INT & RST) ports. Input:     ts: private data. Output:     Executive outcomes.         >= 0: succeed, < 0: failed *******************************************************/ static s8 gtp_request_io_port(struct goodix_ts_data *ts) {     s32 ret = 0;     GTP_DEBUG_FUNC();     ret = GTP_GPIO_REQUEST(GTP_INT_PORT, "GTP_INT_IRQ");     if (ret < 0)      {         GTP_ERROR("Failed to request GPIO:%d, ERRNO:%d", (s32)GTP_INT_PORT, ret);         ret = -ENODEV;     }     else     {         GTP_GPIO_AS_INT(GTP_INT_PORT);           ts->client->irq = GTP_INT_IRQ;     } //    GTP_GPIO_OUTPUT(GTP_INT_PORT, 0); #if 1  //for TNN     ret = GTP_GPIO_REQUEST(GTP_RST_PORT, "GTP_RST_PORT");     if (ret < 0)      {         GTP_ERROR("Failed to request GPIO:%d, ERRNO:%d",(s32)GTP_RST_PORT,ret);         ret = -ENODEV;     }     //GTP_GPIO_AS_INPUT(GTP_RST_PORT);     gtp_reset_guitar(ts->client, 20);          if(ret < 0)     {         GTP_GPIO_FREE(GTP_RST_PORT);         GTP_GPIO_FREE(GTP_INT_PORT);     } #endif     return ret; } /******************************************************* Function:     Request interrupt. Input:     ts: private data. Output:     Executive outcomes.         0: succeed, -1: failed. *******************************************************/ static s8 gtp_request_irq(struct goodix_ts_data *ts) {     s32 ret = -1;     const u8 irq_table[] = GTP_IRQ_TAB;     GTP_DEBUG_FUNC();     GTP_DEBUG("INT trigger type:%x", ts->int_trigger_type);     ret  = request_irq(ts->client->irq,                         goodix_ts_irq_handler,                        irq_table[ts->int_trigger_type],                        ts->client->name,                        ts);     if (ret)     {         GTP_ERROR("Request IRQ failed!ERRNO:%d.", ret);         GTP_GPIO_AS_INPUT(GTP_INT_PORT);         GTP_GPIO_FREE(GTP_INT_PORT);         hrtimer_init(&ts->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);         ts->timer.function = goodix_ts_timer_handler;         hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL);         return -1;     }     else      {         gtp_irq_disable(ts);         ts->use_irq = 1;         return 0;     } } /******************************************************* Function:     Request input device Function. Input:     ts:private data. Output:     Executive outcomes.         0: succeed, otherwise: failed. *******************************************************/ static s8 gtp_request_input_dev(struct goodix_ts_data *ts) {     s8 ret = -1;     s8 phys[32]; #if GTP_HAVE_TOUCH_KEY     u8 index = 0; #endif        GTP_DEBUG_FUNC();        ts->input_dev = input_allocate_device();     if (ts->input_dev == NULL)     {         GTP_ERROR("Failed to allocate input device.");         return -ENOMEM;     } #ifdef GZSD_LINUX ts->input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ; #else     ts->input_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ; #endif #if GTP_ICS_SLOT_REPORT     __set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);     input_mt_init_slots(ts->input_dev, 16);     // in case of "out of memory" #else     #ifndef GZSD_LINUX     ts->input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); #endif #endif #ifndef GZSD_LINUX     __set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit); #endif #if GTP_HAVE_TOUCH_KEY     for (index = 0; index < GTP_MAX_KEY_NUM; index++)     {         input_set_capability(ts->input_dev, EV_KEY, touch_key_array[index]);       } #endif #if GTP_SLIDE_WAKEUP     input_set_capability(ts->input_dev, EV_KEY, KEY_POWER); #endif  #if GTP_WITH_PEN     // pen support     __set_bit(BTN_TOOL_PEN, ts->input_dev->keybit);     __set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);     //__set_bit(INPUT_PROP_POINTER, ts->input_dev->propbit); #endif #if GTP_CHANGE_X2Y     GTP_SWAP(ts->abs_x_max, ts->abs_y_max); #endif #ifdef GZSD_LINUX input_set_abs_params(ts->input_dev, ABS_X, 0, GTP_MAX_WIDTH, 0, 0); input_set_abs_params(ts->input_dev, ABS_Y, 0, GTP_MAX_HEIGHT, 0, 0); input_set_abs_params(ts->input_dev, ABS_PRESSURE, 0, 1, 0, 0); #else     input_set_abs_params(ts->input_dev, ABS_MT_POSITION_X, 0, ts->abs_x_max, 0, 0);     input_set_abs_params(ts->input_dev, ABS_MT_POSITION_Y, 0, ts->abs_y_max, 0, 0);     input_set_abs_params(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0, 255, 0, 0);     input_set_abs_params(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);     input_set_abs_params(ts->input_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0); #endif     sprintf(phys, "input/ts");     ts->input_dev->name = GTP_I2C_NAME;//goodix_ts_name;     ts->input_dev->phys = phys;     ts->input_dev->id.bustype = BUS_I2C;     ts->input_dev->id.vendor = 0xDEAD;     ts->input_dev->id.product = 0xBEEF;     ts->input_dev->id.version = 10427;          ret = input_register_device(ts->input_dev);     if (ret)     {         GTP_ERROR("Register %s input device failed", ts->input_dev->name);         return -ENODEV;     }      #ifdef CONFIG_HAS_EARLYSUSPEND     ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;     ts->early_suspend.suspend = goodix_ts_early_suspend;     ts->early_suspend.resume = goodix_ts_late_resume;     register_early_suspend(&ts->early_suspend); #endif     return 0; } //************** For GT9XXF Start *************// #if GTP_COMPATIBLE_MODE s32 gtp_fw_startup(struct i2c_client *client) {     u8 opr_buf[4];     s32 ret = 0;          //init sw WDT opr_buf[0] = 0xAA; ret = i2c_write_bytes(client, 0x8041, opr_buf, 1);     if (ret < 0)     {         return FAIL;     }          //release SS51 & DSP     opr_buf[0] = 0x00;     ret = i2c_write_bytes(client, 0x4180, opr_buf, 1);     if (ret < 0)     {         return FAIL;     }     //int sync     gtp_int_sync(25);            //check fw run status     ret = i2c_read_bytes(client, 0x8041, opr_buf, 1);     if (ret < 0)     {         return FAIL;     }     if(0xAA == opr_buf[0])     {         GTP_ERROR("IC works abnormally,startup failed.");         return FAIL;     }     else     {         GTP_INFO("IC works normally, Startup success.");         opr_buf[0] = 0xAA;         i2c_write_bytes(client, 0x8041, opr_buf, 1);         return SUCCESS;     } } static s32 gtp_esd_recovery(struct i2c_client *client) {     s32 retry = 0;     s32 ret = 0;     struct goodix_ts_data *ts;          ts = i2c_get_clientdata(client);          gtp_irq_disable(ts);          GTP_INFO("GT9XXF esd recovery mode");     gtp_reset_guitar(client, 20);       // reset & select I2C addr     for (retry = 0; retry < 5; ++retry)     {         ret = gup_fw_download_proc(NULL, GTP_FL_ESD_RECOVERY);          if (FAIL == ret)         {             GTP_ERROR("esd recovery failed %d", retry+1);             continue;         }         ret = gtp_fw_startup(ts->client);         if (FAIL == ret)         {             GTP_ERROR("GT9XXF start up failed %d", retry+1);             continue;         }         break;     }     gtp_irq_enable(ts);          if (retry >= 5)     {         GTP_ERROR("failed to esd recovery");         return FAIL;     }          GTP_INFO("Esd recovery successful");     return SUCCESS; } void gtp_recovery_reset(struct i2c_client *client) { #if GTP_ESD_PROTECT     gtp_esd_switch(client, SWITCH_OFF); #endif     GTP_DEBUG_FUNC();          gtp_esd_recovery(client);       #if GTP_ESD_PROTECT     gtp_esd_switch(client, SWITCH_ON); #endif } static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode) {     s32 ret = 0;     s32 i = 0;     s32 j = 0;     u16 ref_sum = 0;     u16 learn_cnt = 0;     u16 chksum = 0;     s32 ref_seg_len = 0;     s32 ref_grps = 0;     struct file *ref_filp = NULL;     u8 *p_bak_ref;          ret = gup_check_fs_mounted("/data");     if (FAIL == ret)     {         ts->ref_chk_fs_times++;         GTP_DEBUG("Ref check /data times/MAX_TIMES: %d / %d", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX);         if (ts->ref_chk_fs_times < GTP_CHK_FS_MNT_MAX)         {             msleep(50);             GTP_INFO("/data not mounted.");             return FAIL;         }         GTP_INFO("check /data mount timeout...");     }     else     {         GTP_INFO("/data mounted!!!(%d/%d)", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX);     }          p_bak_ref = (u8 *)kzalloc(ts->bak_ref_len, GFP_KERNEL);          if (NULL == p_bak_ref)     {         GTP_ERROR("Allocate memory for p_bak_ref failed!");         return FAIL;        }          if (ts->is_950)     {         ref_seg_len = ts->bak_ref_len / 6;         ref_grps = 6;     }     else     {         ref_seg_len = ts->bak_ref_len;         ref_grps = 1;     }     ref_filp = filp_open(GTP_BAK_REF_PATH, O_RDWR | O_CREAT, 0666);     if (IS_ERR(ref_filp))     {         GTP_INFO("%s is unavailable, default backup-reference used", GTP_BAK_REF_PATH);         goto bak_ref_default;     }          switch (mode)     {     case GTP_BAK_REF_SEND:         GTP_INFO("Send backup-reference");         ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);         ret = ref_filp->f_op->read(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);         if (ret < 0)         {             GTP_ERROR("failed to read bak_ref info from file, sending defualt bak_ref");             goto bak_ref_default;         }         for (j = 0; j < ref_grps; ++j)         {             ref_sum = 0;             for (i = 0; i < (ref_seg_len); i += 2)             {                 ref_sum += (p_bak_ref[i + j * ref_seg_len] << 8) + p_bak_ref[i+1 + j * ref_seg_len];             }             learn_cnt = (p_bak_ref[j * ref_seg_len + ref_seg_len -4] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -3]);             chksum = (p_bak_ref[j * ref_seg_len + ref_seg_len -2] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -1]);             GTP_DEBUG("learn count = %d", learn_cnt);             GTP_DEBUG("chksum = %d", chksum);             GTP_DEBUG("ref_sum = 0xX", ref_sum & 0xFFFF);             // Sum(1~ref_seg_len) == 1             if (1 != ref_sum)             {                 GTP_INFO("wrong chksum for bak_ref, reset to 0x00 bak_ref");                 memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len);                 p_bak_ref[ref_seg_len + j * ref_seg_len - 1] = 0x01;             }             else             {                 if (j == (ref_grps - 1))                 {                     GTP_INFO("backup-reference data in %s used", GTP_BAK_REF_PATH);                 }             }         } GTP_INFO("++++ts->bak_ref_len0x%x ",ts->bak_ref_len); for( i=0;i<ts->bak_ref_len;i++) GTP_INFO("0x%x ",p_bak_ref[i]); GTP_INFO("-----ts->bak_ref_len0x%x ",ts->bak_ref_len);         ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);         if (FAIL == ret)         {             GTP_ERROR("failed to send bak_ref because of iic comm error");             filp_close(ref_filp, NULL);             return FAIL;         }         break;              case GTP_BAK_REF_STORE:         GTP_INFO("Store backup-reference");         ret = i2c_read_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);         if (ret < 0)         {             GTP_ERROR("failed to read bak_ref info, sending default back-reference");             goto bak_ref_default;         }         ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);         ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);         break;              default:         GTP_ERROR("invalid backup-reference request");         break;     }     filp_close(ref_filp, NULL);     return SUCCESS; bak_ref_default:          for (j = 0; j < ref_grps; ++j)     {         memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len);         p_bak_ref[j * ref_seg_len + ref_seg_len - 1] = 0x01;  // checksum = 1          }     ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);     if (!IS_ERR(ref_filp))     {         GTP_INFO("write backup-reference data into %s", GTP_BAK_REF_PATH);         ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);         ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);         filp_close(ref_filp, NULL);     }     if (ret == FAIL)     {         GTP_ERROR("failed to load the default backup reference");         return FAIL;     }     return SUCCESS; } static s32 gtp_verify_main_clk(u8 *p_main_clk) {     u8 chksum = 0;     u8 main_clock = p_main_clk[0];     s32 i = 0;          if (main_clock < 50 || main_clock > 120)         {         return FAIL;     }          for (i = 0; i < 5; ++i)     {         if (main_clock != p_main_clk[i])         {             return FAIL;         }         chksum += p_main_clk[i];     }     chksum += p_main_clk[5];     if ( (chksum) == 0)     {         return SUCCESS;     }     else     {         return FAIL;     } } static s32 gtp_main_clk_proc(struct goodix_ts_data *ts) {     s32 ret = 0;     s32 i = 0;     s32 clk_chksum = 0;     struct file *clk_filp = NULL;     u8 p_main_clk[6] = {0};     ret = gup_check_fs_mounted("/data");     if (FAIL == ret)     {         ts->clk_chk_fs_times++;         GTP_DEBUG("Clock check /data times/MAX_TIMES: %d / %d", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX);         if (ts->clk_chk_fs_times < GTP_CHK_FS_MNT_MAX)         {             msleep(50);             GTP_INFO("/data not mounted.");             return FAIL;         }         GTP_INFO("Check /data mount timeout!");     }     else     {         GTP_INFO("/data mounted!!!(%d/%d)", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX);     }          clk_filp = filp_open(GTP_MAIN_CLK_PATH, O_RDWR | O_CREAT, 0666);     if (IS_ERR(clk_filp))     {         GTP_ERROR("%s is unavailable, calculate main clock", GTP_MAIN_CLK_PATH);     }     else     {         clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET);         clk_filp->f_op->read(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos);                 ret = gtp_verify_main_clk(p_main_clk);         if (FAIL == ret)         {             // recalculate main clock & rewrite main clock data to file             GTP_ERROR("main clock data in %s is wrong, recalculate main clock", GTP_MAIN_CLK_PATH);         }         else         {              GTP_INFO("main clock data in %s used, main clock freq: %d", GTP_MAIN_CLK_PATH, p_main_clk[0]);             filp_close(clk_filp, NULL);             goto update_main_clk;         }     }      #if GTP_ESD_PROTECT     gtp_esd_switch(ts->client, SWITCH_OFF); #endif     ret = gup_clk_calibration();     gtp_esd_recovery(ts->client);      #if GTP_ESD_PROTECT     gtp_esd_switch(ts->client, SWITCH_ON); #endif     GTP_INFO("calibrate main clock: %d", ret);     if (ret < 50 || ret > 120)     {         GTP_ERROR("wrong main clock: %d", ret);         goto exit_main_clk;     }          // Sum{0x8020~0x8025} = 0     for (i = 0; i < 5; ++i)     {         p_main_clk[i] = ret;         clk_chksum += p_main_clk[i];     }     p_main_clk[5] = 0 - clk_chksum;          if (!IS_ERR(clk_filp))     {         GTP_DEBUG("write main clock data into %s", GTP_MAIN_CLK_PATH);         clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET);         clk_filp->f_op->write(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos);         filp_close(clk_filp, NULL);     }      update_main_clk: GTP_INFO("main clock data %d %d %d %d %d %d", p_main_clk[0], p_main_clk[1], p_main_clk[2]\ , p_main_clk[3], p_main_clk[4], p_main_clk[5]);                  ret = i2c_write_bytes(ts->client, GTP_REG_MAIN_CLK, p_main_clk, 6);     if (FAIL == ret)     {         GTP_ERROR("update main clock failed!");         return FAIL;     }     return SUCCESS;      exit_main_clk:     if (!IS_ERR(clk_filp))     {         filp_close(clk_filp, NULL);     }     return FAIL; } s32 gtp_gt9xxf_init(struct i2c_client *client) {     s32 ret = 0;          ret = gup_fw_download_proc(NULL, GTP_FL_FW_BURN);      if (FAIL == ret)     {         return FAIL;     }          ret = gtp_fw_startup(client);     if (FAIL == ret)     {         return FAIL;     }     return SUCCESS; } void gtp_get_chip_type(struct goodix_ts_data *ts) {     u8 opr_buf[10] = {0x00};     s32 ret = 0;          msleep(10);          ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CHIP_TYPE, opr_buf, 10);          if (FAIL == ret)     {         GTP_ERROR("Failed to get chip-type, set chip type default: GOODIX_GT9");         ts->chip_type = CHIP_TYPE_GT9;         return;     }          if (!memcmp(opr_buf, "GOODIX_GT9", 10))     {         ts->chip_type = CHIP_TYPE_GT9;     }     else // GT9XXF     {         ts->chip_type = CHIP_TYPE_GT9F;     }     GTP_INFO("Chip Type: %s", (ts->chip_type == CHIP_TYPE_GT9) ? "GOODIX_GT9" : "GOODIX_GT9F"); } #endif //************* For GT9XXF End ************// /******************************************************* Function:     I2c probe. Input:     client: i2c device struct.     id: device id. Output:     Executive outcomes.          0: succeed. *******************************************************/  static int goodix_ts_probe(struct i2c_client *client, const struct i2c_device_id *id) {     s32 ret = -1;     struct goodix_ts_data *ts;     u16 version_info;          GTP_DEBUG_FUNC();          //do NOT remove these logs     GTP_INFO("GTP Driver Version: %s", GTP_DRIVER_VERSION);     GTP_INFO("GTP Driver Built@%s, %s", __TIME__, __DATE__);     GTP_INFO("GTP I2C Address: 0xx", client->addr);     i2c_connect_client = client;          if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))      {         GTP_ERROR("I2C check functionality failed.");         return -ENODEV;     }     ts = kzalloc(sizeof(*ts), GFP_KERNEL);     if (ts == NULL)     {         GTP_ERROR("Alloc GFP_KERNEL memory failed.");         return -ENOMEM;     }          memset(ts, 0, sizeof(*ts));     INIT_WORK(&ts->work, goodix_ts_work_func);     ts->client = client;     spin_lock_init(&ts->irq_lock);          // 2.6.39 later     // ts->irq_lock = SPIN_LOCK_UNLOCKED;   // 2.6.39 & before #if GTP_ESD_PROTECT     ts->clk_tick_cnt = 2 * HZ;      // HZ: clock ticks in 1 second generated by system     GTP_DEBUG("Clock ticks for an esd cycle: %d", ts->clk_tick_cnt);       spin_lock_init(&ts->esd_lock);     // ts->esd_lock = SPIN_LOCK_UNLOCKED; #endif     i2c_set_clientdata(client, ts);          ts->gtp_rawdiff_mode = 0;     ret = gtp_request_io_port(ts);     if (ret < 0)     {         GTP_ERROR("GTP request IO port failed.");         kfree(ts);         return ret;     }      #if GTP_COMPATIBLE_MODE     gtp_get_chip_type(ts);          if (CHIP_TYPE_GT9F == ts->chip_type)     {         ret = gtp_gt9xxf_init(ts->client);         if (FAIL == ret)         {             GTP_INFO("Failed to init GT9XXF.");         }     } #endif     ret = gtp_i2c_test(client);     if (ret < 0)     {         GTP_ERROR("I2C communication ERROR!");     }     ret = gtp_read_version(client, &version_info);     if (ret < 0)     {         GTP_ERROR("Read version failed.");     }          ret = gtp_init_panel(ts);     if (ret < 0)     {         GTP_ERROR("GTP init panel failed.");         ts->abs_x_max = GTP_MAX_WIDTH;         ts->abs_y_max = GTP_MAX_HEIGHT;         ts->int_trigger_type = GTP_INT_TRIGGER;     }           #if GTP_AUTO_UPDATE     ret = gup_init_update_proc(ts);     if (ret < 0)     {         GTP_ERROR("Create update thread error.");     } #endif     ret = gtp_request_input_dev(ts);     if (ret < 0)     {         GTP_ERROR("GTP request input dev failed");     }          ret = gtp_request_irq(ts);      if (ret < 0)     {         GTP_INFO("GTP works in polling mode.");     }     else     {         GTP_INFO("GTP works in interrupt mode.");     }     if (ts->use_irq)     {         gtp_irq_enable(ts);     }      #if GTP_CREATE_WR_NODE     init_wr_node(client); #endif      #if GTP_ESD_PROTECT     gtp_esd_switch(client, SWITCH_ON); #endif     return 0; } /******************************************************* Function:     Goodix touchscreen driver release function. Input:     client: i2c device struct. Output:     Executive outcomes. 0---succeed. *******************************************************/ static int goodix_ts_remove(struct i2c_client *client) {     struct goodix_ts_data *ts = i2c_get_clientdata(client);          GTP_DEBUG_FUNC();      #ifdef CONFIG_HAS_EARLYSUSPEND     unregister_early_suspend(&ts->early_suspend); #endif #if GTP_CREATE_WR_NODE     uninit_wr_node(); #endif #if GTP_ESD_PROTECT     destroy_workqueue(gtp_esd_check_workqueue); #endif     if (ts)      {         if (ts->use_irq)         {             GTP_GPIO_AS_INPUT(GTP_INT_PORT);             GTP_GPIO_FREE(GTP_INT_PORT);             free_irq(client->irq, ts);         }         else         {             hrtimer_cancel(&ts->timer);         }     }             GTP_INFO("GTP driver removing...");     i2c_set_clientdata(client, NULL);     input_unregister_device(ts->input_dev);     kfree(ts);     return 0; } #ifdef CONFIG_HAS_EARLYSUSPEND /******************************************************* Function:     Early suspend function. Input:     h: early_suspend struct. Output:     None. *******************************************************/ static void goodix_ts_early_suspend(struct early_suspend *h) {     struct goodix_ts_data *ts;     s8 ret = -1;         ts = container_of(h, struct goodix_ts_data, early_suspend);          GTP_DEBUG_FUNC(); #if GTP_ESD_PROTECT     gtp_esd_switch(ts->client, SWITCH_OFF); #endif     ts->gtp_is_suspend = 1;      #if GTP_SLIDE_WAKEUP     ret = gtp_enter_doze(ts); #else     if (ts->use_irq)     {         gtp_irq_disable(ts);     }     else     {         hrtimer_cancel(&ts->timer);     }     ret = gtp_enter_sleep(ts); #endif      if (ret < 0)     {         GTP_ERROR("GTP early suspend failed.");     }     // to avoid waking up while not sleeping     //  delay 48 + 10ms to ensure reliability         msleep(58);    } /******************************************************* Function:     Late resume function. Input:     h: early_suspend struct. Output:     None. *******************************************************/ static void goodix_ts_late_resume(struct early_suspend *h) {     struct goodix_ts_data *ts;     s8 ret = -1;     ts = container_of(h, struct goodix_ts_data, early_suspend);          GTP_DEBUG_FUNC();     ret = gtp_wakeup_sleep(ts); #if GTP_SLIDE_WAKEUP     doze_status = DOZE_DISABLED; #endif     if (ret < 0)     {         GTP_ERROR("GTP later resume failed.");     } #if (GTP_COMPATIBLE_MODE)     if (CHIP_TYPE_GT9F == ts->chip_type)     {         // do nothing     }     else #endif     {GTP_INFO("it is not CHIP_TYPE_GT9F");         gtp_send_cfg(ts->client);     }     if (ts->use_irq)     {         gtp_irq_enable(ts);     }     else     {         hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL);     }     ts->gtp_is_suspend = 0; #if GTP_ESD_PROTECT     gtp_esd_switch(ts->client, SWITCH_ON); #endif } #endif #if GTP_ESD_PROTECT s32 gtp_i2c_read_no_rst(struct i2c_client *client, u8 *buf, s32 len) {     struct i2c_msg msgs[2];     s32 ret=-1;     s32 retries = 0;     GTP_DEBUG_FUNC();     msgs[0].flags = !I2C_M_RD;     msgs[0].addr  = client->addr;     msgs[0].len   = GTP_ADDR_LENGTH;     msgs[0].buf   = &buf[0];     //msgs[0].scl_rate = 300 * 1000;    // for Rockchip, etc.          msgs[1].flags = I2C_M_RD;     msgs[1].addr  = client->addr;     msgs[1].len   = len - GTP_ADDR_LENGTH;     msgs[1].buf   = &buf[GTP_ADDR_LENGTH];     //msgs[1].scl_rate = 300 * 1000;     while(retries < 5)     {         ret = i2c_transfer(client->adapter, msgs, 2);         if(ret == 2)break;         retries++;     }     if ((retries >= 5))     {             GTP_ERROR("I2C Read: 0xX, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);     }     return ret; } s32 gtp_i2c_write_no_rst(struct i2c_client *client,u8 *buf,s32 len) {     struct i2c_msg msg;     s32 ret = -1;     s32 retries = 0;     GTP_DEBUG_FUNC();     msg.flags = !I2C_M_RD;     msg.addr  = client->addr;     msg.len   = len;     msg.buf   = buf;     //msg.scl_rate = 300 * 1000;    // for Rockchip, etc     while(retries < 5)     {         ret = i2c_transfer(client->adapter, &msg, 1);         if (ret == 1)break;         retries++;     }     if((retries >= 5))     {         GTP_ERROR("I2C Write: 0xX, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);     }     return ret; } /******************************************************* Function:     switch on & off esd delayed work Input:     client:  i2c device     on:      SWITCH_ON / SWITCH_OFF Output:     void *********************************************************/ void gtp_esd_switch(struct i2c_client *client, s32 on) {     struct goodix_ts_data *ts;          ts = i2c_get_clientdata(client);     spin_lock(&ts->esd_lock);          if (SWITCH_ON == on)     // switch on esd      {         if (!ts->esd_running)         {             ts->esd_running = 1;             spin_unlock(&ts->esd_lock);             GTP_INFO("Esd started");             queue_delayed_work(gtp_esd_check_workqueue, >p_esd_check_work, ts->clk_tick_cnt);         }         else         {             spin_unlock(&ts->esd_lock);         }     }     else    // switch off esd     {         if (ts->esd_running)         {             ts->esd_running = 0;             spin_unlock(&ts->esd_lock);             GTP_INFO("Esd cancelled");             cancel_delayed_work_sync(>p_esd_check_work);         }         else         {             spin_unlock(&ts->esd_lock);         }     } } /******************************************************* Function:     Initialize external watchdog for esd protect Input:     client:  i2c device. Output:     result of i2c write operation.          1: succeed, otherwise: failed *********************************************************/ static s32 gtp_init_ext_watchdog(struct i2c_client *client) {     u8 opr_buffer[3] = {0x80, 0x41, 0xAA};     GTP_DEBUG("[Esd]Init external watchdog");     return gtp_i2c_write_no_rst(client, opr_buffer, 3); } /******************************************************* Function:     Esd protect function.     External watchdog added by meta, 2013/03/07 Input:     work: delayed work Output:     None. *******************************************************/ static void gtp_esd_check_func(struct work_struct *work) {     s32 i;     s32 ret = -1;     struct goodix_ts_data *ts = NULL;     u8 esd_buf[4] = {0x80, 0x40};          GTP_DEBUG_FUNC();         ts = i2c_get_clientdata(i2c_connect_client);     if (ts->gtp_is_suspend)     {         GTP_INFO("Esd suspended!");         return;     }          for (i = 0; i < 3; i++)     {         ret = gtp_i2c_read_no_rst(ts->client, esd_buf, 4);                  GTP_DEBUG("[Esd]0x8040 = 0xX, 0x8041 = 0xX", esd_buf[2], esd_buf[3]);         if ((ret < 0))         {             // IIC communication problem             continue;         }         else         {              if ((esd_buf[2] == 0xAA) || (esd_buf[3] != 0xAA))             {                 // IC works abnormally..                 u8 chk_buf[4] = {0x80, 0x40};                                  gtp_i2c_read_no_rst(ts->client, chk_buf, 4);                                  GTP_DEBUG("[Check]0x8040 = 0xX, 0x8041 = 0xX", chk_buf[2], chk_buf[3]);                                  if ((chk_buf[2] == 0xAA) || (chk_buf[3] != 0xAA))                 {                     i = 3;                     break;                 }                 else                 {                     continue;                 }             }             else              {                 // IC works normally, Write 0x8040 0xAA, feed the dog                 esd_buf[2] = 0xAA;                  gtp_i2c_write_no_rst(ts->client, esd_buf, 3);                 break;             }         }     }     if (i >= 3)     {     #if GTP_COMPATIBLE_MODE         if (CHIP_TYPE_GT9F == ts->chip_type)         {                     if (ts->rqst_processing)             {                 GTP_INFO("Request processing, no esd recovery");             }             else             {                 GTP_ERROR("IC working abnormally! Process esd recovery.");                 gtp_esd_recovery(ts->client);             }         }         else     #endif         {             GTP_ERROR("IC working abnormally! Process reset guitar.");             gtp_reset_guitar(ts->client, 50);         }     }     if(!ts->gtp_is_suspend)     {         queue_delayed_work(gtp_esd_check_workqueue, >p_esd_check_work, ts->clk_tick_cnt);     }     else     {         GTP_INFO("Esd suspended!");     }     return; } #endif static const struct i2c_device_id goodix_ts_id[] = {     { GTP_I2C_NAME, 0 },     { } }; static struct i2c_driver goodix_ts_driver = {     .probe      = goodix_ts_probe,     .remove     = goodix_ts_remove, //#ifndef CONFIG_HAS_EARLYSUSPEND #ifdef CONFIG_HAS_EARLYSUSPEND     .suspend    = goodix_ts_early_suspend,     .resume     = goodix_ts_late_resume, #endif     .id_table   = goodix_ts_id,     .driver = {         .name     = GTP_I2C_NAME,         .owner    = THIS_MODULE,     }, }; /*******************************************************     Function:     Driver Install function. Input:     None. Output:     Executive Outcomes. 0---succeed. ********************************************************/ static int __devinit goodix_ts_init(void) {     s32 ret;     GTP_DEBUG_FUNC();        GTP_INFO("GTP driver installing...");     goodix_wq = create_singlethread_workqueue("goodix_wq");     if (!goodix_wq)     {         GTP_ERROR("Creat workqueue failed.");         return -ENOMEM;     } #if GTP_ESD_PROTECT     INIT_DELAYED_WORK(>p_esd_check_work, gtp_esd_check_func);     gtp_esd_check_workqueue = create_workqueue("gtp_esd_check"); #endif     ret = i2c_add_driver(&goodix_ts_driver); misc_register(&misc);     return ret;  } /*******************************************************     Function:     Driver uninstall function. Input:     None. Output:     Executive Outcomes. 0---succeed. ********************************************************/ static void __exit goodix_ts_exit(void) {     GTP_DEBUG_FUNC();     GTP_INFO("GTP driver exited.");     i2c_del_driver(&goodix_ts_driver);     if (goodix_wq)     {         destroy_workqueue(goodix_wq);     } } late_initcall(goodix_ts_init); module_exit(goodix_ts_exit); MODULE_DESCRIPTION("GTP Series Driver"); MODULE_LICENSE("GPL");
    转载请注明原文地址: https://ju.6miu.com/read-38862.html

    最新回复(0)