Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1Sample Output
0 34 626 6875Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
Stanford Local 2006
求斐波拉切数列的第n项数取余后的值 但是问题在于n给的特别大
这时就要用到矩阵快速幂来解决这个问题,直接矩阵快速幂模板,其实和快速幂差不多只是把数换为矩阵即可,在遇到像斐波拉契这种有递推关系时可以考虑一下矩阵快速幂
难点就在于如何构建矩阵,就像上面这个题的矩阵就特别好构造
代码:
#include <cstdio> #include <iostream> using namespace std; const int MOD = 10000; struct matrix { int m[2][2]; }ans, base; matrix multi(matrix a, matrix b) { matrix tmp; for(int i = 0; i < 2; ++i) { for(int j = 0; j < 2; ++j) { tmp.m[i][j] = 0; for(int k = 0; k < 2; ++k) tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD; } } return tmp; } int fast_mod(int n) // 求矩阵 base 的 n 次幂 { base.m[0][0] = base.m[0][1] = base.m[1][0] = 1; base.m[1][1] = 0; ans.m[0][0] = ans.m[1][1] = 1; // ans 初始化为单位矩阵 ans.m[0][1] = ans.m[1][0] = 0; while(n) { if(n & 1) //实现 ans *= t; 其中要先把 ans赋值给 tmp,然后用 ans = tmp * t { ans = multi(ans, base); } base = multi(base, base); n >>= 1; } return ans.m[0][1]; } int main() { int n; while(scanf("%d", &n) && n != -1) { printf("%d\n", fast_mod(n)); } return 0; }